Answer:
Resistance = 252.53 Ohms
Explanation:
Given the following data;
Charge = 0.125 C
Voltage = 5 V
Time = 6.3 seconds
To find the resistance;
First of all, we would determine the current flowing through the battery;
Quantity of charge, Q = current * time
0.125 = current * 6.3
Current = 0.125/6.3
Current = 0.0198 A
Next, we find the resistance;
Resistance = voltage/current
Resistance = 5/0.0198
Resistance = 252.53 Ohms
When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.
Answer:
25.71 kgm/s
Explanation:
Let K₁ and K₂ be the initial and final kinetic energies of object A and v₁ and v₂ its initial and final speeds.
Given that K₂ = 0.7K₁
1/2mv₂² = 0.7(1/2mv₁²)
v₂ = √0.7v₁ = √0.7 × 20 m/s = ±16.73 m/s
Since A rebounds, its velocity = -16.73 m/s and its momentum change, p₂ = mΔv = m(v₂ - v₁) = 0.7 kg (-16.73 - 20) m/s = 0.7( -36.73) = -25.71 kgm/s.
Th magnitude of object A's momentum change is thus 25.71 kgm/s
Answer:
b. Both stars will have the same shift.
Explanation:
It's a very simple problem to solve. Star 1 is approaching toward Earth with a speed v, so let's assume that the change in Doppler Shift is +F and Star 2 is moving away so the change in Doppler shift is -F. But it's time to notice the speed of both stars and that is same but only directions are different. speed is the main factor here. The magnitude of both shifts is F as we can see and + and - are showing there direction of motion. So, because of same amount of speed, both stars will have same shift magnitude. (Just the directions are different)