The effluent flow in concentration and particulate mass flow will be 0.198m³/sec.
<h3>How to calculate the effluent flow?</h3>
It should be noted that the total inflow will be equal to the total outflow. Therefore,
0.2 + 0.048 = 0.05 + We
Collect like terms
Qe = 0.2 + 0.048 - 0.05
Qe = 0.198m³/sec
The concentration will be:
= (360 × 1000)/0.05
= 7200mg/L.
Learn more about effluent flow on:
brainly.com/question/22714269
#SPJ1
Answer:
are electrical signals
Explanation:
Feel free to correct me, I'm just trying to help
Answer:
Explanation:
Molar heat capacity at constant volume Cv of a gas = n x .5 R where n is degree of freedom of the gas molecules
CO₂ is a linear molecule , so number of degree of freedom = 3 + 2 = 5
3 is translational and 2 is rotational degree of freedom . There is no vibrational degree of freedom given .
So Cv = 5 / 2 R
= 2.5 R .
True because if anything is moving it is in motion. And because horizontal is similar to projectile!
<h3>
Answer:</h3>
0.50 mol SiO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
30 g SiO₂ (sand)
<u>Step 2: Identify Conversions</u>
Molar Mass of Si - 28.09 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of SiO₂ - 28.09 + 2(16.00) = 60.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 2 sig figs.</em>
0.499251 mol SiO₂ ≈ 0.50 mol SiO₂