Answer:
The 150 g Al will reach a higher temperature.
Explanation:
- The amount of heat added to a substance (Q) can be calculated from the relation:
<em>Q = m.c.ΔT.</em>
where, Q is the amount of heat added,
m is the mass of the substance,
c is the specific heat of the substance,
ΔT is the temperature difference (final T - initial T).
Since, Q and c is constant, ΔT will depend only on the mass of the substance (m).
∵ ΔT is inversely proportional to the mass of the substance.
<em>∴ The piece with the lowest mass (150.0 g) will reach a higher temperature than that of a higher mass (250.0 g).</em>
<em>So, the right choice is: The 150 g Al will reach a higher temperature.</em>
Answer:

Explanation:
We have to start this question with <u>Beer's Law</u>,
. On this equation we will have:
<u>A=Absorbance</u>
<u>E=Molar absorption coefficient</u>
<u>b= Optical path</u>
<u>C=Concentration</u>
So, the question is: <u>what values of this equation we know?</u>. If we check the question we have the <u>absorbance value "0.148"</u> additionally we have the slope of the plot, this <u>slope is the molar absorption coefficient</u>, therefore <u>E=0.598 M-1</u>, finally we have also the optical path. <u>The optical path is 1 cm</u> for all devices, so <u>b=1 cm</u>. With all these values we can calculate the concentration "C".



So, we will have a <u>concentration of 0.247 M</u>
I hope it helps!
The state of energy that is forbidden is 2p orbital. The correct option is b).
<h3>
What is the energy state of electrons?</h3>
The energy state of an electron depends upon the presence of the electron on the orbitals. Lower the energy they will be in the lower orbital. When they get higher energy they move to the higher orbital.
By using the Selection Rules for Electron Transitions
1.) ?l = +/- 1 and
2.) ?m = 0, +/- 1
The conservation of angular momentum is required by these laws. A photon's inherent angular momentum is 1. As 4p is higher than 2p and the electron is lowering its energy. So, it will go down to 2p orbital.
Thus, the correct option is b). 2p orbital.
The question is incomplete. Your full question is given below:
a) 3d
b) 2p
c) 1s
d) 2s
To learn more about the energy state of electrons, refer to the link:
brainly.com/question/4138621
#SPJ4
Answer:
0.500 moles of CO2 has a volume of 11.2 L at STP (option B)
Explanation:
Step 1: Data given
Volume of a gas at STP = 11.2 L
STP: Pressure = 1 atm and temperature = 273 K
Step 2: Calculate volume
p*V= n*R*T
V = (n*R*T)/p
⇒with V = the volume of the gas = TO BE DETERMINED
⇒with n = the number of moles of the gas
⇒with R = the gas constant = 0.08206 L*atm/mol*K
⇒with T = the temperature = 273 K
⇒with p = the pressure of the gas = 1 atm
A
) 0.250 mole of NH3
V = (0.250 * 0.08206 * 273) / 1
V = 5.6 L
B
) 0.500 mole of CO2
V = (0.500 * 0.08206 * 273) / 1
V = 11.2 L
C
) 0.750 mole of NH3
V = (0.750 * 0.08206 * 273) / 1
V = 16.8 L
D) 1.00 mole of CO2
V = (1.00 * 0.08206* 273) / 1
V = 22.4 L
0.500 moles of CO2 has a volume of 11.2 L at STP (option B)