Answer:
46 g of sodium
Explanation:
Sodium reacts vigorously with fluoride gas to form NaF as shown
2Na (s) + F2 (g) ------> 2NaF (s) (Na = 23, F = 19)
2 moles of Na reacts with 1 mole of F2 to produce NaF
By calculating the molar mass of the elements involved in the reaction then multiplied by the mole, the mass can be obtained.
23 * 2 g/mol of Na reacts with 1 * 19 g/mol of F2
46 g/mol of Na reacts with 19 g/mol of F2 to produce NaF
Since the mole ratio is 2 to 1 and 19 g of F2 is used for the reaction, 46 g of sodium will be consumed for the reaction to be achieved.
Answer:

Explanation:
Hello,
In this case, since we can consider hydrogen gas as an ideal gas, we check the volume-pressure-temperature-mole relationship by using the ideal gas equation:

Whereas we are asked to compute the moles given the temperature in Kelvins, thr pressure in atm and volume in L as shown below:

Best regards.
Answer : The correct option is, (D) double replacement reaction
Explanation :
Synthesis reaction : A chemical reaction where multiple substances or reactants combine to form a single product.
It is represented as,

Decomposition reaction : A chemical reaction in which larger reactant decomposes to give two or more than two products.
It is represented as,

Single replacement reaction : A chemical reaction in which the more reactive element replace the less reactive element.
It is represented as,

In this reaction, A is more reactive element and B is less reactive element.
Double replacement reaction : It is a type of chemical reaction where a positive cation and a negative anion of two reactants exchange places to form two new products.
It is represented as,

(X and A are the cations, Y and B are the anions)
The given reaction is:

This reaction is a double displacement reaction.
Answer:
The volume of the gas at 100°C is 4.6189 liters.
Explanation:
For this problem we are going to use Charles' law. Charles' law states that the volume is directly proportional to temperature given that the pressure is constant. In order to use the equation, the unit of temperature should be in Kelvin.
The working equation is:
=
where V1 and T1 are the initial volume and temperature while V2 and T2 are the final conditions.
Let us convert first the temperatures before solving for the final volume.
To convert Celsius to Kelvin just add 273.15 to temperature in Celsius.
50°C + 273.15 = 323.15 K
100°C + 273.15 = 373.15 K
Solving for the final volume:
V₂ =
V₂ =
V₂ = 4.6189 L
Therefore the final volume of the gas at 100°C is 4.6189 L.
Explanation: