Answer:
The answer to your question is
4C₇H₁₇ + 45 O₂ ⇒ 28 CO₂ + 34H₂O
Explanation:
Write the equation
C₇H₁₇ + O₂ ⇒ CO₂ + H₂O
Process
1.- Check if the equation is balanced
Reactants Element Products
7 C 1
17 H 2
2 O 3
As the number of reactants and products is different, we conclude that the reaction is unbalanced.
2.- Write a coefficient "7" to CO₂ and a coefficient of 17/2 to H₂O
C₇H₁₇ + O₂ ⇒ 7CO₂ +
H₂O
Reactants Element Products
7 C 7
17 H 17
2 O 51/2
3.- Write a coefficient of 45/2 to the O₂, and multiply all the equation by 2.
4C₇H₁₇ + 45 O₂ ⇒ 28 CO₂ + 34H₂O
Reactants Element Products
28 C 28
68 H 68
90 O 90
The answer is B, sodium is an element.
In one mole of glucose 38 ATP energy is stored this accounts for only 40 per-cent of the total energy in glucose.
Explanation:
In standard conditions, during the cellular respiration 1 mole of Glucose in the presence of oxygen produces 36 or 38 ATPs. This accounts for only 40% of the total energy as the remaining 60 per-cent of the energy is dissipated as heat.
I mole of glucose enters the glycolysis step of aerobic cellular respiration which after oxidative phosphorylation and Electron transport chain would give 38 ATP molecules.
It can be said that only 38.3% of energy is put in ATP molecules.
A valid Lewis structure of IF3 cannot be drawn without violating the octet rule.
Answer: IF3 (Iodine Trifluoride)
This is because, I (Iodine) and F (Fluorine) both have odd number of valence electrons (7) which also means that there are too many valence electrons in the valence shell.
D is the correct answer... if u need in depth let me know