I see two ways to do it.
First, you have to understand that when you see a 'complex fraction' like this, the top number is a numerator, and the two bottom numbers are both denominators.
Way-1:
Take the top fraction . . . 2/2 . That's equal to 1 . So the whole thing is <em>1/3</em>.
Way-2:
Multiply the bottom two denominators. Then the whole thing is 2/(2·3) . That's the same thing as 2/6 . Simplify that, and you have <em>1/3</em> .
Answer:
90 ounces
Step-by-step explanation:
72 x 15/12 = 90
Answer:
answer is 1/4 or One divided by four
tan²(<em>θ</em>) - sin²(<em>θ</em>) = sin²(<em>θ</em>)/cos²(<em>θ</em>) - sin²(<em>θ</em>)
-- because tan(<em>θ</em>) = sin(<em>θ</em>)/cos(<em>θ</em>) by definition of tangent --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - 1)
-- we pull out the common factor of sin²(<em>θ</em>) from both terms --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - cos²(<em>θ</em>)/cos²(<em>θ</em>))
-- because <em>x</em>/<em>x</em> = 1 (so long as <em>x</em> ≠ 0) --
… = sin²(<em>θ</em>) ((1 - cos²(<em>θ</em>))/cos²(<em>θ</em>))
-- we simply combine the fractions, which we can do because of the common denominator of cos²(<em>θ</em>) --
… = sin²(<em>θ</em>) (sin²(<em>θ</em>)/cos²(<em>θ</em>))
-- due to the Pythagorean identity, sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1 --
… = sin²(<em>θ</em>) tan²(<em>θ</em>)
-- again, by definition of tan(<em>θ</em>) --
Answer:
10 in
Step-by-step explanation: