Answer:The correct answer is option 4.
Explanation:
Arrhenius acids are those compounds which gives
ions when dissolved in their aqueous solution.

Arrhenius bases are those compounds which gives
ions when dissolved in their aqueous solution.

are Arrhenius acids because they form
ions in their respective aqueous solution.


Hence, the correct answer is option 4.
Answer:
Here's what I get
Explanation:
Assume the initial concentrations of H₂ and I₂ are 0.030 and 0.015 mol·L⁻¹, respectively.
We must calculate the initial concentration of HI.
1. We will need a chemical equation with concentrations, so let's gather all the information in one place.
H₂ + I₂ ⇌ 2HI
I/mol·L⁻¹: 0.30 0.15 x
2. Calculate the concentration of HI
![Q_{\text{c}} = \dfrac{\text{[HI]}^{2}} {\text{[H$_{2}$][I$_{2}$]}} =\dfrac{x^{2}}{0.30 \times 0.15} = 5.56\\\\x^{2} = 0.30 \times 0.15 \times 5.56 = 0.250\\x = \sqrt{0.250} = \textbf{0.50 mol/L}\\\text{The initial concentration of HI is $\large \boxed{\textbf{0.50 mol/L}}$}](https://tex.z-dn.net/?f=Q_%7B%5Ctext%7Bc%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BHI%5D%7D%5E%7B2%7D%7D%20%7B%5Ctext%7B%5BH%24_%7B2%7D%24%5D%5BI%24_%7B2%7D%24%5D%7D%7D%20%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.30%20%5Ctimes%200.15%7D%20%3D%20%205.56%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.30%20%5Ctimes%200.15%20%5Ctimes%205.56%20%3D%200.250%5C%5Cx%20%3D%20%5Csqrt%7B0.250%7D%20%3D%20%5Ctextbf%7B0.50%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20initial%20concentration%20of%20HI%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.50%20mol%2FL%7D%7D%24%7D)
3. Plot the initial points
The graph below shows the initial concentrations plotted on the vertical axis.
The given statement, some type of path is necessary to join both half-cells in order for electron flow to occur, is true.
Explanation:
Flow of electrons is possible with the help of a conducting medium like metal wire.
A laboratory device which helps in completion of oxidation and reduction-half reactions of a galvanic or voltaic cell is known as salt bridge. Basically, this salt bridge helps in the flow of electrons from anode to cathode and vice-versa.
If salt bridge is not present in an electrochemical cell, the electron neutrality will not be maintained and hence, flow of electrons will not take place.
Thus, we can conclude that the statement some type of path is necessary to join both half-cells in order for electron flow to occur, is true.