The answer is A....... brainiest plz?
In pure water, all of the molecules in the liquid are water molecules so the mole fraction is 1 (100 % H2O, 55 mol/L). In sea water, the concentration of water molecules in the solution is less than that of pure water so the vapor pressure of sea water is also lower.
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
Answer:
39.1 °C
Explanation:
Recall the equation for specific heat:

Where q is the heat, m is the mass, c is the specific heat of the substance (in this case water), and delta T is the change in temperature.
You should know that the specific heat of water is 1 cal/g/C.
Using the information in the question:

The final temperature is about 39.1 °C.
The pressure of a gas is the force that the gas exerts on the walls of its container. When you blow air into a balloon, the balloon expands because the pressure of air molecules is greater on the inside of the balloon than the outside. Pressure is a property which determines the direction in which mass flows.