Answer:200/3 M which is approximately equal to 66.6667 M
Explanation:Molarity is defined as the number of moles of solute per liter of solution.
It can be calculated as follows:

We are given that:
number of moles of solute = 8 moles
volume of solution = 120 ml = 0.12 liters
Substitute with the givens in the above equation to get the molarity as follows:
molarity =

Hope this helps :)
Answer:
The difference in temperature is significant means that the lower-boiling liquid finishes distilling at a temperature that is too low for the higher-boiling liquid to be in vapor form yet.
Explanation:
The temperature will rise as the vapor of lower-boiling liquid rushes into the distillation head. However once the lower-boiling liquid is done distilling, there is a temperature drop because while the lower temperature liquid is done distilling, the temperature is still too low for the higher-boiling liquid to be rushing in as a vapour, so the temperature drops.
The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>

The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
1,3-butadiene is the simplest conjugated diene and undergoes 1,4 addition reaction in acidic environment.
Chemical reaction: CH₂=CH-CH=CH₂ + H₂O → CH₃-CH=CH-CH₂-OH.
CH₂=CH-CH=CH₂ - 1,3-butadiene.
CH₃-CH=CH-CH₂-OH - 2-buten-1-ol.
Diene<span> or </span>diolefin<span> is a </span>hydrocarbon<span> that has two </span>carbon double bonds<span>.</span>