We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
Question 5 is the second one.
False, in an exothermic reaction, an increase in temperature does not favor the formation of products. Instead, it favors the backward reaction. An exothermic reaction is a reaction where energy is transferred from the system out to the environment.
<u>Answer:</u> The formula of the compound formed between rubidium and fluorine is RbF
<u>Explanation:</u>
Ionic bond is defined as the bond which is formed by complete transfer of electrons from one atom to another atom.
The atom which looses the electron is known as electropositive atom and the atom which gains the electron is known as electronegative atom. This bond is usually formed between a metal and a non-metal.
Rubidium is the 37th element of the periodic table having electronic configuration of 
This will loose 1 electron to form
ion
Fluoride is the 9th element of the periodic table having electronic configuration of 
This will gain 1 electron to form
ion
To form
compound, 1 rubidium ion is needed to neutralize the charge on fluoride ion
The formation of the given compounds is shown in the image below.
<u>Q</u><u>U</u><u>E</u><u>S</u><u>T</u><u>I</u><u>O</u><u>N</u><u> </u><u>:</u>
- highest energy level for lithium
<u>A</u><u>N</u><u>S</u><u>W</u><u>E</u><u>R</u><u> </u><u>:</u>
- There are 2 electrons on the first energy level and 1 electron on the second. Explain that the first energy level can only have 2 electrons so the next electron in lithium is on the next (second) level. Explain that neon has 10 protons and 10 electrons.