Answer:
The velocity of flow is 10.0 m/s.
Explanation:
We shall use Manning's equation to calculate the velocity of flow
Velocity of flow by manning's equation is given by

where
n = manning's roughness coefficient
R = hydraulic radius
S = bed slope of the channel
We know that for an asphalt channel value of manning's roughness coefficient = 0.016
Applying values in the above equation we obtain velocity of flow as

Answer:
// Program is written in C++ Programming Language
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main ()
{
// Variable declaration
string name;
int numQuestions;
int numCorrect;
double percentage;
//Prompt to enter student's first and last name
cout<<"Enter student's first and last name";
cin>>name; // this line accepts input for variable name
cout<<"Number of question on test"; //Prompt to enter number of questions on test
cin>> numQuestions; //This line accepts Input for Variable numQuestions
cout<<"Number of answers student got correct: "; // Prompt to enter number of correct answers
cin>>numCorrect; //Enter number of correct answers
percentage = numCorrect * 100 / numQuestions; // calculate percentage
cout<<name<<" "<<percentage<<"%"; // print
return 0;
}
Explanation:
The code above calculates the percentage of a student's score in a certain test.
The code is extracted from the Question and completed after extraction.
It's written in C++ programming language
And there's an equation to help determine which configurations will work best. In a four-stroke engine, an individual piston fires every 720 degrees (two crankshaft rotations). ... The flat-four fires at 180-degree intervals, and its V angle is 180 degrees, which leads to a balance of firing forces.Jan 14, 2011
I’m not for sure if this is what you we’re looking for