1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
12

Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carb

on dioxide and water.
CH4 + O2 → HCHO + H2O
CH4 + 2O2 → CO2 + 2H2O
The feed to the reactor contains equimolar amounts of methane and oxygen. Assume a basis of 100.0 mol feed/s.
a. How many degrees of freedom remain for the overall process?
b. The fractional conversion of methane is 0.900 and the fractional yield of formaldehyde is 0.860. What is the composition of the output stream?

Engineering
1 answer:
Nezavi [6.7K]3 years ago
7 0

Answer:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Explanation:

Hello,

a. On the attached document, you can see a brief scheme of the process. Thus, to know the degrees of freedom, we state the following unknowns:

- \xi_1 and \xi_2: extent of the reactions (2).

- F_{O_2}^2, F_{CH_4}^2, F_{H_2O}^2, F_{HCHO}^2 and F_{CO_2}^2: Molar flows at the second stream (5).

On the other hand, we've got the following equations:

- F_{O_2}^2=50mol/s-\xi_1-2\xi_2: oxygen mole balance.

- F_{CH_4}^2=50mol/s-\xi_1-\xi_2: methane mole balance.

- F_{H_2O}^2=\xi_1+2\xi_2: water mole balance.

- F_{HCHO}^2=\xi_1: formaldehyde mole balance.

- F_{CO_2}^2=\xi_2: carbon dioxide mole balance.

Thus, the degrees of freedom are:

DF=7unknowns-5equations=2

It means that we need two additional equations or data to solve the problem.

b. Here, the two missing data are given. For the fractional conversion of methane, we define:

0.900=\frac{\xi_1+\xi_2}{50mol/s}

And for the fractional yield of formaldehyde we can set it in terms of methane as the reagents are equimolar:

0.860=\frac{F_{HCHO}^2}{50mol/s}

In such a way, one realizes that the output formaldehyde's molar flow is:

F_{HCHO}^2=0.860*50mol/s=43mol/s

Which is equal to the first reaction extent \xi_1, therefore, one computes the second one from the fractional conversion of methane as:

\xi_2=0.900*50mol/s-\xi_1\\\xi_2=0.900*50mol/s-43mol/s\\\xi_2=2mol/s

Now, one computes the rest of the output flows via:

- F_{O_2}^2=50mol/s-43mol/s-2*2mol/s=3mol/s

- F_{CH_4}^2=50mol/s-43mol/s-2mol/s=5mol/s

- F_{H_2O}^2=43mol/s+2*2mol/s=47mol/s

- F_{HCHO}^2=43mol/s

- F_{CO_2}^2=2mol/s

The total output molar flow is:

F_{O_2}+F_{CH_4}+F_{H_2O}+F_{HCHO}+F_{CO_2}=100mol/s

Therefore the output stream composition turns out into:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Best regards.

You might be interested in
Isormophous phase diagram
shusha [124]

Answer:

Phase diagrams represent the relationship between temperature and the composition of phases present at equilibrium. An isomorphous system is one in which the solid has the same structure for all compositions. The phase diagram shown is the diagram for Cu-Ni, which is an isomorphous alloy system.

Hope it help you friend

6 0
3 years ago
Input signal to a controller is​
alexgriva [62]

Answer:

were the cord plugs in

Explanation:

4 0
3 years ago
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
3 years ago
What is the resistance of a circuit with three 1.5 v batteries and running at a current of 5A?
adoni [48]

Answer:

0.3 Ω

Explanation:

Resistance (R) = V/I

R = 1.5/5

R = 15/50

= 3/10

= 0.3Ω

hope it helps :)

3 0
3 years ago
Why is a metal work enclosure dangerous?
dedylja [7]

Answer:

Why is a metal work enclosure dangerous? Metalworkers are not only exposed to pollutants from metal cut ting and polishing procedures, but they are also exposed to metalworking fluids (MWF).

8 0
2 years ago
Other questions:
  • a. A crude oil pipe’s radius is reduced by 5%. What is the corresponding percentage change in the pressure drop per unit length?
    8·1 answer
  • Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe
    13·1 answer
  • A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
    11·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • 2. A fluid at 14.7 psi (lb-f per square inch) with kinematic viscosity (????????) 1.8 x10-4 ft2/sec and density(????????) 0.076
    11·1 answer
  • A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5 kW cooling capacit
    6·1 answer
  • Pls help! 39 points!!
    5·2 answers
  • Consider a single crystal of nickel oriented such that a tensile stress is applied along a [001] direction. If slip occurs on a
    6·1 answer
  • How do i do this? if y’all don’t mind helping lol
    13·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!