1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
12

Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carb

on dioxide and water.
CH4 + O2 → HCHO + H2O
CH4 + 2O2 → CO2 + 2H2O
The feed to the reactor contains equimolar amounts of methane and oxygen. Assume a basis of 100.0 mol feed/s.
a. How many degrees of freedom remain for the overall process?
b. The fractional conversion of methane is 0.900 and the fractional yield of formaldehyde is 0.860. What is the composition of the output stream?

Engineering
1 answer:
Nezavi [6.7K]3 years ago
7 0

Answer:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Explanation:

Hello,

a. On the attached document, you can see a brief scheme of the process. Thus, to know the degrees of freedom, we state the following unknowns:

- \xi_1 and \xi_2: extent of the reactions (2).

- F_{O_2}^2, F_{CH_4}^2, F_{H_2O}^2, F_{HCHO}^2 and F_{CO_2}^2: Molar flows at the second stream (5).

On the other hand, we've got the following equations:

- F_{O_2}^2=50mol/s-\xi_1-2\xi_2: oxygen mole balance.

- F_{CH_4}^2=50mol/s-\xi_1-\xi_2: methane mole balance.

- F_{H_2O}^2=\xi_1+2\xi_2: water mole balance.

- F_{HCHO}^2=\xi_1: formaldehyde mole balance.

- F_{CO_2}^2=\xi_2: carbon dioxide mole balance.

Thus, the degrees of freedom are:

DF=7unknowns-5equations=2

It means that we need two additional equations or data to solve the problem.

b. Here, the two missing data are given. For the fractional conversion of methane, we define:

0.900=\frac{\xi_1+\xi_2}{50mol/s}

And for the fractional yield of formaldehyde we can set it in terms of methane as the reagents are equimolar:

0.860=\frac{F_{HCHO}^2}{50mol/s}

In such a way, one realizes that the output formaldehyde's molar flow is:

F_{HCHO}^2=0.860*50mol/s=43mol/s

Which is equal to the first reaction extent \xi_1, therefore, one computes the second one from the fractional conversion of methane as:

\xi_2=0.900*50mol/s-\xi_1\\\xi_2=0.900*50mol/s-43mol/s\\\xi_2=2mol/s

Now, one computes the rest of the output flows via:

- F_{O_2}^2=50mol/s-43mol/s-2*2mol/s=3mol/s

- F_{CH_4}^2=50mol/s-43mol/s-2mol/s=5mol/s

- F_{H_2O}^2=43mol/s+2*2mol/s=47mol/s

- F_{HCHO}^2=43mol/s

- F_{CO_2}^2=2mol/s

The total output molar flow is:

F_{O_2}+F_{CH_4}+F_{H_2O}+F_{HCHO}+F_{CO_2}=100mol/s

Therefore the output stream composition turns out into:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Best regards.

You might be interested in
Using any of the bilinear transform, matched pole-zero, or impulse invariance techniques in converting a continuous-time system
leonid [27]

Answer:

A. True

The bilinear transform is employed in digital signal processing and discrete-time control theory which helps in transforming continuous-time system representations to discrete-time

4 0
3 years ago
Read 2 more answers
A food department is kept at -12 °C by a refrigerator in an environment at 30 °C. The total heat gain to the food department is
Nataly [62]

Answer: P = 0.416 kW

Explanation:

taken a step by step process to solving this problem.

we have that from the question;

the amount of heat rejected Qn = 4800 kJ/h

the cooling effect is Ql = 3300 kJ/h

Applying the first law of thermodynamics for this system gives us

Шnet = Qn -Ql

Шnet = 4800 - 3300 = 1500 kJ/h

Next we would calculate the coefficient of performance of the refrigerator;

COPr = Desired Effect / work output = Ql / Шnet  = 3300/1500 = 2.2

COPr = 2.2

The Power as required gives;

P = Qn - Ql  = 4800 - 3300 = 1500 kJ/h = 0.416

P = 0.416 kW

cheers i hope this helps!!!!1

5 0
4 years ago
Suppose you have two arrays: Arr1 and Arr2. Arr1 will be sorted values. For each element v in Arr2, you need to write a pseudo c
brilliants [131]

Answer:

The algorithm is as follows:

1. Declare Arr1 and Arr2

2. Get Input for Arr1 and Arr2

3. Initialize count to 0

4. For i in Arr2

4.1 For j in Arr1:

4.1.1 If i > j Then

4.1.1.1 count = count + 1

4.2 End j loop

4.3 Print count

4.4 count = 0

4.5 End i loop

5. End

Explanation:

This declares both arrays

1. Declare Arr1 and Arr2

This gets input for both arrays

2. Get Input for Arr1 and Arr2

This initializes count to 0

3. Initialize count to 0

This iterates through Arr2

4. For i in Arr2

This iterates through Arr1 (An inner loop)

4.1 For j in Arr1:

This checks if current element is greater than current element in Arr1

4.1.1 If i > j Then

If yes, count is incremented by 1

4.1.1.1 count = count + 1

This ends the inner loop

4.2 End j loop

Print count and set count to 0

<em>4.3 Print count</em>

<em>4.4 count = 0</em>

End the outer loop

4.5 End i loop

End the algorithm

5. End

6 0
3 years ago
Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
VladimirAG [237]

Answer:

The value of v2 in each case is:

A) V2=3v for only Vs1

B) V2=2v for only Vs2

C) V2=5v for both Vs1 and Vs2

Explanation:

In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.

Also, what the problem asks is the value V2 in each case, where:

V_2=I_2R_2=V_{ab}

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.

In the first case we can use an equivalent resistance between R2 and R3:

V_{ab}'=I_1'R_{2||3}=I_1'\cdot(\frac{1}{R_2}+\frac{1}{R_3})^{-1}

And

V_{S1}-I_1'R_1-I_1'R_4-I_1'R_{2||3}=0 \rightarrow I_1'=0.6A

V_{ab}'=I_1'R_{2||3}=3V=V_{2}'

In the second case we can use an equivalent resistance between R2 and (R1+R4):

V_{ab}''=I_3'R_{2||1-4}=I_3'\cdot(\frac{1}{R_2}+\frac{1}{R_1+R_4})^{-1}

And

V_{S2}-I_3'R_3-I_3'R_{2||1-4}=0 \rightarrow I_3'=0.4A

V_{ab}''=I_3'R_{2||1-4}=2V

If we consider both batteries:

V_2=I_2R_2=V_{ab}=V_{ab}'+V_{ab}''=5V

7 0
4 years ago
If you stretch a rubber hose and pluck it, you can observe a pulse traveling up and down the hose. What happens to the speed of
stich3 [128]

Answer:

Explanation:if you stretch the hose more tightly the speed of the pulse will reduce..

5 0
3 years ago
Other questions:
  • If a ball is dropped from a height​ (H) its velocity will increase until it hits the ground​ (assuming that aerodynamic drag due
    5·1 answer
  • The textile industry has seen steady growth in the United States.<br> O True<br> O False
    12·1 answer
  • According to the article "Edward R. Murrow: Inventing Broadcast Journalism," how did Murrow perceive the threat of Adolf Hitler?
    9·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • The basic concept of feedback control is that an error must exist before some corrective action can be made?
    12·1 answer
  • Crest is to high, as through is to
    12·2 answers
  • The air standard efficiency ofan Otto cycle compared to diesel cycle for thie given compression ratio is: (a) same (b) less (c)
    12·1 answer
  • A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of
    14·1 answer
  • Since no one is perfect is that a sentence fragment
    10·2 answers
  • What is a transition? A. An animation that happens on a single slide B. An outline format that uses roman numerals C. An image f
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!