Answer:
HW=1.71m
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
Answer:
Maximum shear stress is;
τ_max = 1427.12 psi
Explanation:
We are given;
Power = 2 HP = 2 × 746 Watts = 1492 W
Angular speed;ω = 450 rev/min = 450 × 2π/60 rad/s = 47.124 rad/s
Diameter;d = 1 in
We know that; power = shear stress × angular speed
So,
P = τω
τ = P/ω
τ = 1492/47.124
τ = 31.66 N.m
Converting this to lb.in, we have;
τ = 280.2146 lb.in
Maximum shear stress is given by the formula;
τ_max = (τ•d/2)/J
J is polar moment of inertia given by the formula; J = πd⁴/32
So,
τ_max = (τ•d/2)/(πd⁴/32)
This reduces to;
τ_max = (16τ)/(πd³)
Plugging in values;
τ_max = (16 × 280.2146)/((π×1³)
τ_max = 1427.12 psi
Answer:
y ≈ 2.5
Explanation:
Given data:
bottom width is 3 m
side slope is 1:2
discharge is 10 m^3/s
slope is 0.004
manning roughness coefficient is 0.015
manning equation is written as

where R is hydraulic radius
S = bed slope



P is perimeter 

![Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}](https://tex.z-dn.net/?f=Q%20%3D%20%282%2B2y%29%20y%29%20%5Ctimes%201%2F0.015%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%200.004%5E%7B1%2F2%7D)
solving for y![100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}](https://tex.z-dn.net/?f=100%20%3D%282%2B2y%29%20y%29%20%5Ctimes%20%281%2F0.015%29%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%20%5Ctimes%200.004%5E%7B1%2F2%7D)
solving for y value by using iteration method ,we get
y ≈ 2.5