Answer:
- public class Main {
- public static void main(String[] args) {
- String testString = "abscacd";
-
- String evenStr = "";
- String oddStr = "";
-
- for(int i=testString.length() - 1; i >= 0; i--){
-
- if(i % 2 == 0){
- evenStr += testString.charAt(i);
- }
- else{
- oddStr += testString.charAt(i);
- }
- }
-
- System.out.println(evenStr + oddStr);
- }
- }
Explanation:
Firstly, let declare a variable testString to hold an input string "abscacd" (Line 1).
Next create another two String variable, evenStr and oddStr and initialize them with empty string (Line 5-6). These two variables will be used to hold the string at even index and odd index, respectively.
Next, we create a for loop that traverse the characters of the input string from the back by setting initial position index i to testString.length() - 1 (Line 8). Within the for-loop, create if and else block to check if the current index, i is divisible by 2, (i % 2 == 0), use the current i to get the character of the testString and join it with evenStr. Otherwise, join it with oddStr (Line 10 -14).
At last, we print the concatenated evenStr and oddStr (Line 18).
Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.
Answer:
Explained
Explanation:
This situation can occur because of various factors such as:
- Gradual deterioration of lubrication and coolant.
- change of environmental condition such as temperature, humidity, moisture, etc.
- Change in the properties of incoming raw material
- An increase or decrease in the temperature of the heat treating operation
- Debris interfering with the manufacturing process.
R = distance
dr/dt speed or with a direction, velocity
d(dr/dt)/dt = the time derivative of the velocity is called acceleration.
Speed is a scalar. Acceleration is a vector.
Answer:
Explanation:
We use kinetic friction when a body is moving i.e.
for calculations.
Static friction is used when a body is in rest while kinetic friction is used when a body is moving and its value is quite low as compared to static friction .
Static friction value increases as we apply more force while kinetic friction occurs when there is relative motion between bodies.