It takes them 1 7/8 hrs to complete the job together.
How:
Fred = 3 hrs
Jason = 5 hrs
1/3x + 1/5x = 1/x
3x x 5x = 15 —> 3x/15 + 5x/15 = 15/15
3x + 5x = 8x —> 8x/15 = 1.875 = 1 7/8 hrs
Answer:
67
Step-by-step explanation: Given the quadratic equation $z^2 + bz + c = 0$, Vieta's formulas tell us the sum of the roots is $-b$, and the product of the roots is $c$. Thus,
\[-b = (-7 + 2i) + (-7 - 2i) = -14,\]so $b = 14.$
Also,
\[c = (-7 + 2i)(-7 - 2i) = (-7)^2 - (2i)^2 = 49 + 4 = 53.\]Therefore, we have $b+c = \boxed{67}$.
There are many other solutions to this problem. You might have started with the factored form $(z - (-7 + 2i))(z - (-7 - 2i)),$ or even thought about the quadratic formula.
This is the aops answer :)
Step-by-step explanation:
<em>x</em><em> </em><em>=</em><em> </em><em>5</em><em>1</em><em>.</em><em>5</em>
<em>I'm </em><em>am </em><em>not </em><em>sure </em><em>about</em><em> </em><em>it </em><em>since </em><em>in </em><em>the</em><em> </em><em>case </em><em>it </em><em>is </em><em>not </em><em>g</em><em>iven </em><em>that </em><em>how </em><em>much </em><em>miles </em><em>he </em><em>walk </em><em>in </em><em>total </em><em>so.</em>
<em>I </em><em>just </em><em>added </em><em>the </em><em>no.</em><em> </em><em>of </em><em>miles </em><em>he </em><em>walk </em><em>in </em><em>part </em><em>A </em><em>and </em><em>B </em><em>so </em><em>I </em><em>got </em><em>x </em><em>=</em><em> </em><em>5</em><em>1</em><em>.</em><em>5</em>
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care </u></em><em><u>and </u></em><em><u>stay </u></em><em><u>safe!</u></em>
Standard form is a+bi where a and b are real numbers
remeber that i²=-1
ok

we got to get the i out of the denomenator
remember the differnce of 2 perfect squares where (a-b)(a+b)=a²-b²
so multiply the whole thing by

we get


in standard form, it is
How many slices are all together?