I would say the answer is liquids
Delta T= T final - T initial
Tfinal= -101.1 °C
Tinitial= -0.5 °C
•Delta T = -101.1°C - (-0.5°C)
=100.6°C
Kelvin= °C + 273
= -100.6 + 273
= 172.4 Kelvin
Answer is: <span>the molarity of this glucose solution is 0.278 M.
m</span>(C₆H₁₂O₆<span>) = 5.10 g.
n</span>(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆<span>) .
</span>n(C₆H₁₂O₆) = 5.10 g ÷ 180.156 g/mol.
n(C₆H₁₂O₆<span>) = 0.028 mol.
</span>V(solution) = 100.5 mL ÷ 1000 mL/L.
V(solution) = 0.1005 L.
c(C₆H₁₂O₆) = n(C₆H₁₂O₆) ÷ V(solution).
c(C₆H₁₂O₆) = 0.028 mol ÷ 0.1005 L.
c(C₆H₁₂O₆<span>) = 0.278 mol/L.</span>
Answer:
Density, 
Explanation:
It is given that, placing a sample of iron (II) oxide into a graduated cylinder makes the water volume increase 12.0 mL.
It means that the volume of the sample is 12 mL
The weight of the sample is 76.6 g
We need to find the density of the sample.
12 mL = 12 cm³
The formula of density is given by :

So, the density of the sample is
.