Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
The solution to the questions are given as


- the direction of induced current will be Counterclock vise.
<h3>What is the direction of the
current induced in the loop, as viewed from above the loop.?</h3>
Given, $B(t)=(1.4 T) e^{-0.057 t}$




(b) 

c)
In conclusion, the direction of the induced current will be Counterclockwise.
Read more about current
brainly.com/question/13076734
#SPJ1
<span>The tides on earth are caused mainly by earths gravitational interactions with the sun and the moon.</span>