1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
2 years ago
11

What is its time interval between the release of the ball and the time it reaches its maximum height? Its initial vertical speed

is 9 m/s and the acceleration of gravity is 9.8 m/s 2 . Neglect air resistance.
Physics
1 answer:
BigorU [14]2 years ago
3 0

Answer:

The time to reach max height is    h = 1/2 g t^2  

The time to fall is the same as that for an equivalent rise

m g h = 1/2 m v^2       KE vs PE

Here:   (Vf - VI) / g = t = -9  / -9.8 = .92 s

You might be interested in
What is the maximum m2 value that the system can be stationary at?
Ne4ueva [31]

Answer: 37.5 kg in 3 s.f.

Explanation:

7 0
3 years ago
A uniform electric field with a magnitude of 5750 N/C points in the positive x direction. Find the change in electric potential
castortr0y [4]

Explanation:

Given that,

Electric field = 5750 N/C

Charge q=+10.5\times10^{-6}\ C

Distance = 5.50 cm

(a). When the charge is moved in the positive x- direction

We need to calculate the change in electric potential energy

Using formula of electric potential energy

\Delta U=-W

\Delta U=-F\cdot d

\Delta U=-q(E\cdot d)

Put the value into the formula

\Delta U=-10.5\times10^{-6}\times5750\times5.50\times10^{-2}

\Delta U=-3.32\times10^{-3}\ J

The change in electric potential energy  is -3.32\times10^{-3}\ J

(b). When the charge is moved in the negative x- direction

We need to calculate the change in electric potential energy

Using formula of electric potential energy

\Delta U=-W

\Delta U=-F\cdot (-d)

\Delta U=-q(E\cdot (-d))

Put the value into the formula

\Delta U=-10.5\times10^{-6}\times5750\times(-5.50\times10^{-2})

\Delta U=3.32\times10^{-3}\ J

The change in electric potential energy  is 3.32\times10^{-3}\ J

Hence, This is the required solution.

3 0
3 years ago
Using equations, determine the temperature, pressure and density of the air for a aircraft flying at 19.5 km. Is this aircraft s
Viefleur [7K]

Answer:

a) - 72.5°c

b) pressure = 3625.13 Pa

c) density =  0.063 kg/m^3

d) it is a subsonic aircraft

Explanation:

a) Determine Temperature

Temperature at 19.5 km ( 19500 m )

T = -131 + ( 0.003 * altitude in meters )

  =  -131 + ( 0.003 * 19500 ) = - 72.5°c

b) Determine pressure and density at 19.5 km altitude

Given :

Po (atmospheric pressure at sea level )  = 101kpa

R ( gas constant of air ) = 0.287 KJ/Kgk

T = -72.5°c ≈ 200.5 k

pressure = 3625.13 Pa

hence density = 0.063 kg/m^3

attached below is the remaining part of the solution

C) determine if the aircraft is subsonic or super sonic

Velocity ( v ) = \sqrt{CRT}  =  \sqrt{1.4*287*200.5 } = 283.8 m/s

hence it is a subsonic aircraft

4 0
3 years ago
North Dakota Electric Company estimates its demand trend line​ (in millions of kilowatt​ hours) to​ be: D​ = 75.0 ​+ 0.45​Q, whe
Alborosie

Answer:

The demand forecast for winter is 96.36 millions KWH

The demand forecast for spring is 145.08 millions KWH

The demand forecast for summer is 169.89 millions KWH

The demand forecast for fall is 73.08 millions KWH

Explanation:

Given that,

The demand trend line​ is

D=(75.0+0.45Q)\times multiplicative\ seasonal\ factors

We need to calculate the demand forecast for winter

Using given formula

D=(75.0+0.45Q)\times multiplicative\ seasonal\ factors

Put the value into the formula

D=(75.0+0.45\times101)\times0.80

D=96.36\ millions\ KWH

We need to calculate the demand forecast for spring

Using given formula

D=(75.0+0.45Q)\times multiplicative\ seasonal\ factors

Put the value into the formula

D=(75.0+0.45\times102)\times1.20

D=145.08\ millions\ KWH

We need to calculate the demand forecast for summer

Using given formula

D=(75.0+0.45Q)\times multiplicative\ seasonal\ factors

Put the value into the formula

D=(75.0+0.45\times103)\times1.40

D=169.89\ millions KWH

We need to calculate the demand forecast for fall

Using given formula

D=(75.0+0.45Q)\times multiplicative\ seasonal\ factors

Put the value into the formula

D=(75.0+0.45\times104)\times0.60

D=73.08\ millions KWH

Hence, The demand forecast for winter is 96.36 millions KWH

The demand forecast for spring is 145.08 millions KWH

The demand forecast for summer is 169.89 millions KWH

The demand forecast for fall is 73.08 millions KWH

3 0
3 years ago
A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest
ZanzabumX [31]
<span>1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which part of an Adam is actively exchanged or shared in a chemical bond?
    12·1 answer
  • Which of the following phrases defines the angle of refraction?
    13·2 answers
  • A toy car that is 0.12 m long is used to model the actions of an actual car that is 6 m long. which ratio shows the relationship
    5·1 answer
  • Which of the following would be an example of an uncontrolled experiment? The effect of salt and water being mixed at different
    10·1 answer
  • A floor polisher has a rotating disk that has a 14-cm radius. The disk rotates at a constant angular velocity of 1.3 rev/s and i
    15·2 answers
  • A regular atom has a net charge of _____
    12·1 answer
  • which cell structure is responsible for taking in and breaking down foreign particles and damaged organelles?
    15·1 answer
  • A 1.50-m cylindrical rod of diameter 0.500 cm is connected to a power supply that maintains a constant potential difference of 1
    15·1 answer
  • On a part-time job, you are asked to bring a cylindrical iron rod of density 7800 kg/m3 , length 92.6 cm and diameter 2.95 cm fr
    8·1 answer
  • How bones do humans have ??
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!