This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:

So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).
The kinetic energy of a mass m moving with a velocity v is given by:

And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:

From this we can determine the speed of the mass:

The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).
Answer: work = 1,305kJ
Explanation:
angle= 30°
force= 1,500N
distance= 1,000m
The formula for work is : Work= force x distance, however there is an angle of 30° between the direction of force applied and the direction of motion, therefore force must be decomposed to its value on the horizontal axis which is the direction of motion by using the cosine of the very angle.
W= F×cos(α)×D
W= 1,500×cos (30)×1,000
W= 1,305kJ ( kilojoules)
Answer:
289282
Explanation:
r = Radius of plate = 0.52 mm
d = Plate separation = 0.013 mm
A = Area = 
V = Potential applied = 2 mV
k = Dielectric constant = 40
= Electric constant = 
Capacitance is given by

Charge is given by

Number of electron is given by

The number of charge carriers that will accumulate on this capacitor is approximately 289282.
More than five million cubic kilometers of ice have been identified.
Answer:
1 micron = 1.00E-6 m is one way
1.00^-6 m is another but is not usually considered scientific notation, but
often convenient to use.