Answer:
The molar concentration of a solution made with 3.744 g of Mg(NO₃)₂ dissolved in enough water to make 50.0 mL of solution is 
Explanation:
Molarity or Molar Concentration is the number of moles of solute that are dissolved in a certain volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

In this case:
- Mg: 24.3 g/mole
- N: 14 g/mole
- O: 16 g/mole
So, the molar mass of Mg(NO₃)₂ is:
Mg(NO₃)₂= 24.3 g/mole + 2*(14 g/mole + 3*16 g/mole)= 148.3 g/mole
So, if you have 3.744 g of Mg(NO₃)₂, you can apply the following rule of three: if 148.3 grams of Mg(NO₃)₂ are present in 1 mole, 3.744 grams in how many moles are present?

moles= 0.025
Then you have:
- number of moles=0.025
- volume= 50 mL= 0.05 L (being 1,000 mL= 1 L)
Replacing in the definition of molarity:

you get:

<u><em>The molar concentration of a solution made with 3.744 g of Mg(NO₃)₂ dissolved in enough water to make 50.0 mL of solution is </em></u>
<u><em></em></u>
Answer:
Major product ethoxide ion
Explanation:
- Sodium hydride acts as a strong base towards ethanol.
- Hydride ion abstracts one proton from -OH group in ethanol to produce sodium ethoxide and hydrogen gas.
- It is an example of acid-base reaction where sodium hydride acts as a base and ethanol acts as an acid
- Structure of major organic product i.e. ethoxide ion has been shown below.
hi cut person cute picture what's up my friend
Answer: The
value is 0.664
Explanation:
Distance travelled by solvent front = (7.7-1.45)cm = 6.25 cm
Distance travelled by unknown = (5.6-1.45) cm = 4.15 cm
The retention factor or the
value is defined as the ratio of distance traveled by the unknown to the distance traveled by the solvent front.
Thus the
value is 0.664