I believe the percentage is between 15-20%. Stress is a well known factor that affects the performance of people.
Answer:
To find the mass using density and volume we just multiply them against each other which causes ml to cancel and just leaves us with grams which represents how much the item weights.



Therefore, our final answer is that our pencil weight 3.5 grams
<u><em>Hope this helps! Let me know if you have any questions</em></u>
Explanation:
The five-step process for treating a muscle or joint injury such as an ankle sprain is called "P.R.I.C.E." which is short for Protection, Rest, Ice, Compression, and Elevation).
First overtone of open organ pipe is given as

first overtone of closed organ pipe is given as

now they are in unison so we will have




so end correction of both pipes is e = 1 cm
Answer:
life (N) of the specimen is 117000 cycles
Explanation:
given data
ultimate strength Su = 120 kpsi
stress amplitude σa = 70 kpsi
solution
we first calculate the endurance limit of specimen Se i.e
Se = 0.5× Su .............1
Se = 0.5 × 120
Se = 60 kpsi
and we know strength of friction f = 0.82
and we take endurance limit Se is = 60 kpsi
so here coefficient value (a) will be
a =
......................1
put here value and we get
a =
a = 161.4 kpsi
so coefficient value (b) will be
b =
b =
b = −0.0716
so here number of cycle N will be
N = 
put here value and we get
N = 
N = 117000
so life (N) of the specimen is 117000 cycles