Answer:

Step-by-step explanation:
we know that
The Pythagorean Theorem states that in a right triangle

where
c is the greater side (the hypotenuse)
a and b are the legs
In this problem
Let
c=AB ---> distance from point A to point B
a ---> the difference of the x-coordinates both points
b ---> the difference of the y-coordinates both points
so

substitute




<span>1.Write an equation in slope- intercept form of the line that passes through the given point and is parallel to the graph of the given equation. (2,-2);y=-x-2
D.y=-x
2.Write an equation in slope- intercept form of the line that passes through the given point and is parallel to the graph of the given equation. (2,-1);y=-3/2x-6
C.y=-3/2x+2
3.Write an equation in slope- intercept form of the line that passes through the given point and is parallel to the graph of the given equation. (4,2);x=-3
D.y=4
4.Write an equation in slope- intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation. (-2,3);y=1/2x-1
B.y=-2x-1
5.Write an equation in slope- intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation. (5,0);y+1=2(x-3)
D.y=-1/2x+5/2</span>
Answer:
15% of 40 is 6, add that up, its 46
Step-by-step explanation:
Begin solving like you normally would. Add 2.25 to both sides and subtract 9x from both sides to try getting all x values on one side. However, you will find that after subtracting 9x from both sides, all x values go away, and you end with -2.25=1.6. This is not true (-2.25 is not 1.6), so the answer is no solution. There is no value of x which satisfies that equation.
Answer:
- The probability that overbooking occurs means that all 8 non-regular customers arrived for the flight. Each of them has a 56% probability of arriving and they arrive independently so we get that
P(8 arrive) = (0.56)^8 = 0.00967
- Let's do part c before part b. For this, we want an exact booking, which means that exactly 7 of the 8 non-regular customers arrive for the flight. Suppose we align these 8 people in a row. Take the scenario that the 1st person didn't arrive and the remaining 7 did. That odds of that happening would be (1-.56)*(.56)^7.
Now take the scenario that the second person didn't arrive and the remaining 7 did. The odds would be
(0.56)(1-0.56)(0.56)^6 = (1-.56)*(.56)^7. You can run through every scenario that way and see that each time the odds are the same. There are a total of 8 different scenarios since we can choose 1 person (the non-arriver) from 8 people in eight different ways (combination).
So the overall probability of an exact booking would be [(1-.56)*(.56)^7] * 8 = 0.06079
- The probability that the flight has one or more empty seats is the same as the probability that the flight is NOT exactly booked NOR is it overbooked. Formally,
P(at least 1 empty seat) = 1 - P(-1 or 0 empty seats)
= 1 - P(overbooked) - P(exactly booked)
= 1 - 0.00967 - 0.06079
= 0.9295.
Note that, the chance of being both overbooked and exactly booked is zero, so we don't have to worry about that.
Hope that helps!
Have a great day :P