Answer:
Animals tend to use carbohydrates primarily for short-term energy storage, while lipids are used more for long-term energy storage. Carbohydrates are stored as glycogen in animals while lipids are stored as fats (in plants carbohydrates are stored as cellulose and lipids as oils)
Explanation:
hope this helps!
Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>
<h3>Answer:</h3>
Correct Option-A (Ability to burn skin)
<h3>Explanation:</h3>
When skin tissues are exposed to Acids or Bases a chemical burn occurs as both of these substances are corrosive in nature. These burns occur without providing any heat, results from a very fast reaction, are extremely painful and causes damage to structures present under skin.
Option-B is incorrect because Acids taste sour, while, Bases taste bitter.
Option-C is incorrect because pH of Acids is less than 7 while, pH of Bases is greater than 7.
Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.
Answer:
B. 214.02
Explanation:
1 mol of water weighs 18.015 gm and contains 6.023 × 10²³ molecules
From question, We have 7.15 × 10²⁴ molecules
Dividing we get (7.15 × 10 ²⁴) ÷ ( 6.023 × 10²³) = 11.871 molecules
Now, Weight of water = 11.871 × 18.015 = 213.85 which is nearer to option B