A substance that has no specific volume changes to a substance that has a specific volume.
<h3>
Answer:</h3>
Gas law : Boyle's law
New pressure: 66.24 atm
<h3>
Explanation:</h3>
Concept tested: Gas laws (Boyle's law)
<u>We are given,</u>
- Initial pressure, P₁ = 2.86 atm
- Initial volume, V₁ = 8472 mL
- New volume, V₂ IS 365.8 mL
We need to determine the new pressure, P₂
- According to Boyle's law , the volume of a fixed mass of a gas and the pressure are inversely proportional at constant temperature.
- That is,

- This means , PV = k (constant)
- Therefore; P₁V₁ = P₂V₂
- Rearranging the formula, we can get the new pressure, P₂
P₂ = P₁V₁ ÷ V₂
= (2.86 atm × 8472 mL) ÷ 365.8 mL
= 66.24 atm
Therefore, the new pressure is 66.24 atm
Energy lost to condense = 803.4 kJ
<h3>Further explanation</h3>
Condensation of steam through 2 stages:
1. phase change(steam to water)
2. cool down(100 to 0 C)
1. phase change(condensation)
Lv==latent heat of vaporization for water=2260 J/g

2. cool down
c=specific heat for water=4.18 J/g C

Total heat =

No se si aun necesitas ayuda o no
Step 1 - Discovering the ionic formula of Chromium (III) Carbonate
Chromium (III) Carbonate is formed by the ionic bonding between Chromium (III) (Cr(3+)) and Carbonate (CO3(2-)):

Step 2 - Finding the molar mass of the substance
To find the molar mass, we need to multiply the molar mass of each element by the number of times it appears in the formula of the substance and, finally, sum it all up.
The molar masses are 12 g/mol for C; 16 g/mol for O and 52 g/mol for Cr. We have thus:

The molar mass will be thus:

Step 3 - Finding the percent composition of carbon
As we saw in the previous step, the molar mass of Cr2(CO3)3 is 284 g/mol. From this molar mass, 36 g/mol come from C. We can set the following proportion:

The percent composition of Carbon is thus 12.7 %.