1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
14

Summarize the process of alcoholic fermentation in yeast

Chemistry
1 answer:
AysviL [449]3 years ago
6 0

Alcoholic fermentation is mainly used by various yeast species to make energy.

If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.

The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.

You might be interested in
Each of the following values was read on an instrument of measuring device. In each case the last digit was estimated. Tell what
Drupady [299]

Answer:

<h3>160 cm</h3>

Explanation:

6 0
3 years ago
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
3 years ago
Read 2 more answers
An aluminum block has a density of 2.70 g/mL. If the mass of the block is 24.60 g, find the volume of the substance.
harina [27]

Volume of a substance can be determined by dividing mass of the substance by its density.

That can be mathematical shown as:

Density=Mass/Volume

So, Volume=Mass/Density

Here mass of the substance given as 24.60 g

Whereas density of the substance is 2.70 g/mL

So,

Volume=Mass/Density

=24.6/2.7

=9.1 mL

So volume of the substance is 9.1 mL.

8 0
3 years ago
Is each of the following statements true or false? Correct any that are false.
adell [148]

<u>True,</u> A mole of one substance has the same number of atoms as a mole of any other substance.

<h3>What is a mole?</h3>

Mole, also spelled mol, in chemistry, a standard scientific unit for measuring large quantities of very small entities such as atoms, molecules, or other specified particles.

The mole designates an extremely large number of units, 6.02214076 × 10^{23}. The General Conference on Weights and Measures defined the mole as this number for the International System of Units (SI) effective from May 20, 2019. The mole was previously defined as the number of atoms determined experimentally to be found in 12 grams of carbon-12.

The number of units in a mole also bears the name Avogadro’s number, or Avogadro’s constant, in honour of the Italian physicist Amedeo Avogadro (1776–1856). Avogadro proposed that equal volumes of gases under the same conditions contain the same number of molecules, a hypothesis that proved useful in determining atomic and molecular weights and which led to the concept of the mole.

Learn more about mole

brainly.com/question/1427235

#SPJ4

5 0
1 year ago
What is the formula of the compound formed between the potassium ion and the sulfide ion?
KIM [24]
The formula for K+ and S-2 is K2S because you need 2 potassium ions to balance out the sulfide ion
4 0
3 years ago
Other questions:
  • All of the stars in the sky, except for one, are so far away that they look like small points of light.
    12·1 answer
  • ~Use the graph to answer the questions
    14·2 answers
  • At 25 °c, what is the hydroxide ion concentration, [oh–], in an aqueous solution with a hydrogen ion concentration of [h ] = 3.0
    7·1 answer
  • Determine the dissociation constants for the following acids. Express the answers in proper scientific notation where appropriat
    10·1 answer
  • Which of these is a biomass energy source the sun sugarcane natutal gas water
    14·1 answer
  • If you use a horizontal force of 32.0 N to slide a 12.5 kg wooden crate across a floor at a constant velocity, what is the coeff
    14·1 answer
  • a molecule in a chemical reaction that has its chemical bonds broken is called the _______ in the reaction?​
    15·1 answer
  • Determine the number of moles in 1.5 x 10^25<br> atoms of iron.
    15·1 answer
  • Some students measure the acceleration of a wheeled cart being acted on by varying forces. The students record their data in the
    6·1 answer
  • How many grams are present in 0.26 moles of methane 
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!