Answer:
V = 364500 L, 476.748 yard³
Explanation:
Given that,
The dimensions of a room are 10 meters wide by 15 meters long and 8.0 ft high.
l = 10 m, b = 15 m, h = 8 ft = 2.43 m
The volume of the room is :
V = lbh
So,
V = 10×15×2.43
V = 364.5 m³
As 1 m³ = 1000 L
364.5 m³ = 364500 L
Also, 1 m³ = 1.30795 yard³
364.5 m³ = 476.748 yard³
Hence, this is the required solution.
Answer:
1.935 mole
Explanation:
We'll begin by calculating the number of mole present in 3.88x10^23 molecules of nitrogen(N2). This can be obtained as follow:
From Avogadro's hypothesis, 1 mole of any substance contains 6.02x10^23 molecules. Therefore 1 mole of N2 contains 6.02x10^23 molecules.
Now if 1 mole of N2 contains 6.02x10^23 molecules,
Then Xmol of N2 will contain 3.88x10^23 molecules i.e
Xmol of N2 = (3.88x10^23)/6.02x10^23
Xmol of N2 = 0.645 mole
Now, we can obtain the number of moles of PbO required to generate 3.88x10^23 molecules (i.e 0.645 mole) of N2. This is illustrated below:
The equation for the reaction is given below:
3PbO + 2NH3 → 3Pb + N2 + 3H2O
From the balanced equation above, 3 moles of PbO produced 1 mole of N2.
Therefore, Xmol of PbO will produce 0.645 mole of N2 i.e
Xmol of PbO = 3 x 0.645
Xmol of PbO = 1.935 mole.
From the calculations made above,
1.935 mole of PbO will produce 3.88x10^23 molecules of nitrogen (N2).
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
We can calculate how long the decay by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span><span>From the half-life data, we can calculate for k.
</span>
1/2(Ao) = Ao e^-k(30)
<span>k = 0.023
</span>
0.04Ao = Ao e^0.023(t)
<span>t = 140 sec</span>
Answer:
Molarity of acid, Ca = Cb*Vb*A/Va*B
Explanation:
Using H2SO4 as acid, the reaction is as follow:
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
Volume of acid = Va; Volume of base = Vb, Molar concentration of acid = Ca; Molar concentration of base = Cb; Molarity of acid = A and Molarity of base = B
Ca*Va/Cb*Vb =A/B
∴ Ca = Cb*Vb*A/Va*B