1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
3 years ago
10

Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pres

sure as saturated liquid. The steam mass flow rate is 1.5 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30°C and exits at 60°C. The ideal gas model with 1.005 kJ/kg · K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of the entering steam, in °C, and for the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.

Engineering
1 answer:
Bumek [7]3 years ago
3 0

Answer:

1.12kw is the heat transfer

Explanation:

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force.

Potential energy, stored energy that depends upon the relative position of various parts of a system.

See attachment for the step by step solution.

You might be interested in
An automotive fuel cell consumes fuel at a rate of 28m3/h and delivers 80kW of power to the wheels. If the hydrogen fuel has a h
EastWind [94]

Answer:

The efficiency of this fuel cell is 80.69 percent.

Explanation:

From Physics we define the efficiency of the automotive fuel cell (\eta), dimensionless, as:

\eta = \frac{\dot W_{out}}{\dot W_{in}} (Eq. 1)

Where:

\dot W_{in} - Maximum power possible from hydrogen flow, measured in kilowatts.

\dot W_{out} - Output power of the automotive fuel cell, measured in kilowatts.

The maximum power possible from hydrogen flow is:

\dot W_{in} = \dot V\cdot \rho \cdot L_{c} (Eq. 2)

Where:

\dot V - Volume flow rate, measured in cubic meters per second.

\rho - Density of hydrogen, measured in kilograms per cubic meter.

L_{c} - Heating value of hydrogen, measured in kilojoules per kilogram.

If we know that \dot V = \frac{28}{3600}\,\frac{m^{3}}{s}, \rho = 0.0899\,\frac{kg}{m^{3}}, L_{c} = 141790\,\frac{kJ}{kg} and \dot W_{out} = 80\,kW, then the efficiency of this fuel cell is:

(Eq. 1)

\dot W_{in} = \left(\frac{28}{3600}\,\frac{m^{3}}{s}\right)\cdot \left(0.0899\,\frac{kg}{m^{3}} \right)\cdot \left(141790\,\frac{kJ}{kg} \right)

\dot W_{in} = 99.143\,kW

(Eq. 2)

\eta = \frac{80\,kW}{99.143\,kW}

\eta = 0.807

The efficiency of this fuel cell is 80.69 percent.

3 0
3 years ago
about edubrainly. it seems it takes the questions from this website, C&P them, and also try's to get you to have viruses. ca
Y_Kistochka [10]

Answer:

yes

Explanation:

6 0
3 years ago
Steam at 40 bar and 500o C enters the first-stage turbine with a volumetric flow rate of 90 m3 /min. Steam exits the turbine at
a_sh-v [17]

Answer:

(a) 62460 kg/hr

(b) 17,572.95 kW

(c) 3,814.57 kW

Explanation:

Volumetric flow rate, G = 30 m³ / 1 min => 90 / 60 => 1.5

Calculate for h₁ , h₂ , h₃

h₁ is h at P = 40 bar, 500°C => 3445.84 KJ/Kg

Specific volume steam, ц = 0.086441 m³kg⁻¹

h₂ is h at P = 20 bar, 400°C => 3248.23 KJ/Kg

h₃ is h at P = 20 bar, 500°C => 3468.09 KJ/Kg

h₄ is hg at P = 0.6 bar from saturated water table => 2652.85 KJ/Kg

a)

Mass flow rate of the steam, m = G / ц

m = 1.5 / 0.086441

m = 17.35 kg/s

mass per hour is m = 62460 kg/hr

b)

Total Power produced by two stages

= m (h₁ - h₂) + m (h₃ - h₁)

= m [(3445.84 - 3248.23) + (3468.09 - 2652.85)]

= m [ 197.61 + 815.24 ]

= 17.35 [1012.85]

= 17,572.95 kW

c)

Rate of heat transfer to the steam through reheater

= m (h₃ - h₂)

= 17.35 x (3468.09 - 3248.23)

= 17.35 x 219.86

= 3,814.57 kW

8 0
3 years ago
In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
stellarik [79]

Answer:

V = 125.7m/min

Explanation:

Given:

L = 400 mm ≈ 0.4m

D = 150 mm ≈ 0.15m

T = 5 minutes

F = 0.30mm ≈ 0.0003m

To calculate the cutting speed, let's use the formula :

T = \frac{pi* D * L}{V*F}

We are to find the speed, V. Let's make it the subject.

V = \frac{pi* D * L}{F*T}

Substituting values we have:

V = \frac{pi* 0.4 * 0.15}{0.0003*5}

V = 125.68 m/min ≈ 125.7 m/min

Therefore, V = 125.7m/min

7 0
3 years ago
What is the main purpose of the Signals and Systems course? ​
Vlad1618 [11]

Answer:

Signals and Systems covers analog and digital signal processing, ideas at the heart of modern communication and measurement. We present the basic concepts for continuous-time and discrete-time signals in the time and frequency domains. Time and frequency are related by the Fourier transform.

hope it helps you

7 0
2 years ago
Other questions:
  • 2. Revisions to the drawing are entered in the re-<br> vision block and must include
    8·1 answer
  • An ECM (A) is always installed on the vehicle's firewall (B) stores diagnostic
    15·1 answer
  • A cylindrical hot water storage tank (see sketch) for a set of collectors is located in the basement of a dwelling. The tank is
    13·1 answer
  • Use the drop-down menus to choose the correct term or words to complete the statements.
    10·1 answer
  • An incompressible fluid flows along a 0.20-m-diameter pipe with a uniform velocity of 3 m/s. If the pressure drop between the up
    15·1 answer
  • A convergentâdivergent nozzle has an exit area to throat area ratio of 4. It is supplied with air from a large reservoir in whic
    5·1 answer
  • Suppose that a one-celled organism can be in one of two states – either A or B. An individual in state A will change to state B
    15·1 answer
  • What is meant by engineering jobs ​
    15·2 answers
  • A 250-pound person would use a Type 1 ladder even if he were carrying a load with him. true or false
    5·1 answer
  • When a process is in a state of statistical control, all of the points on a control chart should fall within the control limits.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!