Answer:
Thy answer to your very sophisticated question is 1E23
Explanation:
IT JUST IS! Dont ask any questions
mAsquErade, mAsquerade tHat iS mY naME
Answer:
Explanation:
Given:
Diameter of aluminum wire, D = 3mm
Temperature of aluminum wire, 
Temperature of air, 
Velocity of air flow 
The film temperature is determined as:

from the table, properties of air at 1 atm pressure
At 
Thermal conductivity,
; kinematic viscosity
; Prandtl number 
The reynolds number for the flow is determined as:

sice the obtained reynolds number is less than
, the flow is said to be laminar.
The nusselt number is determined from the relation given by:
![Nu_{cyl}= 0.3 + \frac{0.62Re^{0.5}Pr^{\frac{1}{3}}}{[1+(\frac{0.4}{Pr})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{Re}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}](https://tex.z-dn.net/?f=Nu_%7Bcyl%7D%3D%200.3%20%2B%20%5Cfrac%7B0.62Re%5E%7B0.5%7DPr%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.4%7D%7BPr%7D%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5B1%2B%28%5Cfrac%7BRe%7D%7B282000%7D%29%5E%7B%5Cfrac%7B5%7D%7B8%7D%7D%5D%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D)
![Nu_{cyl}= 0.3 + \frac{0.62(576.92)^{0.5}(0.70275)^{\frac{1}{3}}}{[1+(\frac{0.4}{(0.70275)})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{576.92}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}\\\\=12.11](https://tex.z-dn.net/?f=Nu_%7Bcyl%7D%3D%200.3%20%2B%20%5Cfrac%7B0.62%28576.92%29%5E%7B0.5%7D%280.70275%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.4%7D%7B%280.70275%29%7D%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5B1%2B%28%5Cfrac%7B576.92%7D%7B282000%7D%29%5E%7B%5Cfrac%7B5%7D%7B8%7D%7D%5D%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D%5C%5C%5C%5C%3D12.11)
The covective heat transfer coefficient is given by:

Rewrite and solve for 

The rate of heat transfer from the wire to the air per meter length is determined from the equation is given by:

The rate of heat transfer from the wire to the air per meter length is 
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Where is the following steps??
Answer:
A=16+j12…'B=6+j10.4
Explanation:
add the following vector given in