Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer:
The costs to run the dryer for one year are $ 9.03.
Explanation:
Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:
1 watt = 0.001 kilowatt
2250/45 = 50 watts per minute
45 x 365 = 16,425 / 60 = 273.75 hours of consumption
50 x 60 = 300 watt = 0.3 kw / h
0.3 x 273.75 = 82.125
82.125 x 0.11 = 9.03
Therefore, the costs to run the dryer for one year are $ 9.03.
Answer:
μ = 0.136
Explanation:
given,
velocity of the car = 20 m/s
radius of the track = 300 m
mass of the car = 2000 kg
centrifugal force


F c = 2666. 67 N
F f= μ N
F f = μ m g
2666.67 = μ × 2000 × 9.8
μ = 0.136
so, the minimum coefficient of friction between road surface and car tyre is equal to μ = 0.136
Answer:
goodman = 0.694
life of beam = 211597
Explanation:
alternating stress = 48 kpsi
mean stress = 24 kpsi
ultimate strength = 100 kpsi
endurance limit = 40 kpsi
goodman:
= 
= 
= 0.24 + 1.2 = 
N = 1/1.44
N = 0.694
2. check attachment for diagram
Log(N)-3/3 = log90 - log48/log90 - log40
Log(N)-3/3 = 0.77517
Log N = 5.325509
N = 10^(5.325509)
N = 211597