Answer:
the pressure gradient in the x direction = -15.48Pa/m
Explanation:
- The concept of partial differentiation was used in the determination of the expression for u and v.
- each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.
Answer:
it is f all of the above
Explanation:
let me know if im right
im not positive if im right but i should be right
Answer:
The speed of shaft is 1891.62 RPM.
Explanation:
given that
Amplitude A= 0.15 mm
Acceleration = 0.6 g
So
we can say that acceleration= 0.6 x 9.81

We know that

So now by putting the values



We know that
ω= 2πN/60
198.0=2πN/60
N=1891.62 RPM
So the speed of shaft is 1891.62 RPM.
Answer:

Explanation:
First we calculate the mass of the aire inside the rigid tank in the initial and end moments.
(i could be 1 for initial and 2 for the end)
State1


State2


So, the total mass of the aire entered is

At this point we need to obtain the properties through the tables, so
For Specific Internal energy,

For Specific enthalpy

For the second state the Specific internal Energy (6bar, 350K)

At the end we make a Energy balance, so

No work done there is here, so clearing the equation for Q



The sign indicates that the tank transferred heat<em> to</em> the surroundings.