Answer:
It is expressed as a multiple of one-twelfth the mass of the carbon-12 atom, 1.992646547 × 10−23 gram, which is assigned an atomic mass of 12 units. ... In this scale 1 atomic mass unit (amu) corresponds to 1.660539040 × 10−24 gram.
Answer:
36.66%
Explanation:
Step 1: Given data
- Mass of the sample: 2.875 g
Step 2: Calculate the mass of salt
The mass of the sample is equal to the sum of the masses of the components.
m(sample) = m(iron) + m(sand) + m(salt)
m(salt) = m(sample) - m(iron) - m(sand)
m(salt) = 2.875 g - 0.660 g - 1.161 g
m(salt) = 1.054 g
Step 3: Calculate the percent of salt in the sample
We will use the following expression.
%(salt) = m(salt) / m(sample) × 100%
%(salt) = 1.054 g / 2.875 g × 100% = 36.66%
Answer:
b
Explanation:
The number of vibrations per second is known as the frequency
Answer:
this doesnt make sence ezxplain the subject
Explanation:
When utilizing the gravimetric method, it is crucial to completely dissolve your sample in 10 mL of water. A quantitative technique called gravimetric analysis employs the selective precipitation of the component under study from an aqueous solution.
A group of techniques known as gravimetric analysis are employed in analytical chemistry to quantify an analyte based on its mass. Gravimetric analysis is a quantitative chemical analysis technique that transforms the desired ingredient into a substance (of known composition) that can be extracted from the sample and weighed. This is a crucial point to remember.
Gravimetric water content (g) is therefore defined as the mass of water per mass of dry soil. To calculate it, weigh a sample of wet soil, dry it to remove the water, and then weigh the dried soil (mdry). Dimensions of the sample Water is commonly forgotten despite having a density close to one.
To know more about gravimetry, please refer:
brainly.com/question/18992495
#SPJ4