Answer:
d making models.
Explanation:
When scientists create a representation of a complex process, they are inferring that they are making models.
A model is an abstraction of the real world or a complex process. Models are very useful in developing solutions to processes that are not easily simplified.
- The models allow a part of a body to be simply studied.
- Through this simple abstraction, extrapolations to other parts of the system can be deduced.
- This can give very useful insights into the other parts of the system.
- The heterogeneity of complex processes is a huge limitation to understanding them.
- A homogenous part can be modelled and used to understand the system.
<h2>
Answer:</h2>
<em>Per my research, it was said that each of the atoms of the carbon has over 6 protons, six neutrons, and 6 protons. Each atom of nitrogen has 7 protons, 7 electrons, and 7 neutrons. The atomic mass of carbon and nitrogen is 12 and 14 respectively. As the number of electrons in the atoms of the two elements is different they have different chemical properties.</em>
<h2>
Explanation:</h2>
<em>As you may know, I did my research and this is what it gave me. I would suppose it is correct since it explains that the carob has over 6 protons and so on. Correct me if I am incorrect and I hope this helped. Have a good one!</em>
<h2>
(っ^▿^)۶٩(˘◡˘ )</h2>
Answer: 12 L fluorine gas at STP can be collected from the decomposition of 90.7 g of 
Explanation:
The balanced decomposition reaction is shown as

moles of 
According to stoichiometry:
2 moles of
gives = 3 moles of flourine gas
Thus 0.36 moles of
gives =
of flourine gas
Using ideal gas equation :

P = pressure of gas = 1 atm ( at STP)
V = Volume of gas = ?
n = moles of gas = 0.54
R = gas constant = 0.0821 L atm/Kmol
T = temperature = 273 K ( at STP)
Putting the values we get :


Thus 12 L fluorine gas at STP can be collected from the decomposition of 90.7 g of 
Answer:
B. The coefficients give the molar ration of the reactants
Explanation:
Answer:- The hydroxide ion concentration of the solution is
.
Solution:- The formula used to calculate pOH from hydroxide ion is:
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
When pOH is given and we are asked to calculate hydroxide ion concentration then we multiply both sides by negative sign and take antilog and what we get on doing this is:
![[OH^-]=10^-^p^O^H](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5Ep%5EO%5EH)
pOH is given as 5.71 and we are asked to calculate hydrogen ion concentration. Let's plug in the given value in the formula:
![[OH^-]=10^-^5^.^7^1](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5E5%5E.%5E7%5E1)
= 0.00000195 or 
So, the hydroxide ion concentration of the solution is
.