Answer:
2.30 × 10⁻⁸ N if the two electrons are in a vacuum.
Explanation:
The Coulomb's Law gives the size of the electrostatic force
between two charged objects:
,
where
is coulomb's constant.
in vacuum.
and
are the signed charge of the objects.
is the distance between the two objects.
For the two electrons:
.
.
.
The sign of
is negative. In other words, the two electrons repel each other since the signs of their charges are the same.
Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.
Answer:
The car appears to be moving 30 km/hr in the opposite direction of the bus.
Explanation:
Explanation:
<em>Hello</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em>
<em>You</em><em> </em><em>just</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>use</em><em> </em><em>simple</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>force</em><em> </em><em>and</em><em> </em><em>momentum</em><em>, </em>
<em>F</em><em>=</em><em> </em><em>m.a</em>
<em>and</em><em> </em><em>momentum</em><em> </em><em>(</em><em>p</em><em>)</em><em>=</em><em> </em><em>m.v</em>
<em>where</em><em> </em><em>m</em><em>=</em><em> </em><em>mass</em>
<em>v</em><em>=</em><em> </em><em>velocity</em><em>.</em>
<em>a</em><em>=</em><em> </em><em>acceleration</em><em> </em><em>.</em>
<em>And</em><em> </em><em>the</em><em> </em><em>solutions</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>pictures</em><em>. </em>
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>