Energy Conservation Theory,




<h3>What is law of energy conservation?</h3>
The principle of energy conservation states that energy is neither created nor destroyed. It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics
To learn more about Energy Conservation Theory, visit;
brainly.com/question/8004680
#SPJ4
As we know that two charges exert force on each other when they are placed near to each other
The force between two charges is given as

here we know that
= two different point charges
r = distance between two point charges
also we know that two similar charges always repel each other while two opposite charges always attract each other
so here correct answer would be
<em>A. A positive and negative charge attract each other.</em>
C- escape into the solar system, because the sun is neither a solid nor a liquid, and the sun already creates its warm temperature from many reactions. the light from the sun can scatter throughout the universe, eventually getting to earth. do, have you ever heard of a wave of light being referred to as a solid or a liquid?
Answer:

Explanation:
given,
turntable rotate to, θ = 5 rad
time, t = 2.8 s
initial angular speed = 0 rad/s
final angular speed = ?
now, using equation of rotational motion



α = 1.28 rad/s²
now, calculation of angular velocity



hence, the angular velocity at the end is equal to 3.584 rad/s


<u />



It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m.
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.