From inspecting the graph, you can identify the y-intercept and the slope of the line shown.
The y-intercept is 200 gallons.
The slope is
75-200
m = ------------- = -12.5 gallons/minute
10 - 0
Thus, y = 200 gallons - [12.5 gallons/minute ]t
To answer the 2nd question, let t = 12 minutes and calculate y(12).
To determine how long it wld take to empty the tank, set the above formula equal to zero and solve the resulting equation for t.
A negative exponent means to move the decimal point to the left the number of the exponent.
10^-1 you would move the decimal 1 place to the left.
5.401 x 10^-1 = 0.5401
Answer:'
-9.7 minus, in 13
Step-by-step explanation:
Answer:

Step-by-step explanation:



Answer:
The GCF for the variable part is
k
Step-by-step explanation:
Since
18
k
,
15
k
3
contain both numbers and variables, there are two steps to find the GCF (HCF). Find GCF for the numeric part then find GCF for the variable part.
Steps to find the GCF for
18
k
,
15
k
3
:
1. Find the GCF for the numerical part
18
,
15
2. Find the GCF for the variable part
k
1
,
k
3
3. Multiply the values together
Find the common factors for the numerical part:
18
,
15
The factors for
18
are
1
,
2
,
3
,
6
,
9
,
18
.
Tap for more steps...
1
,
2
,
3
,
6
,
9
,
18
The factors for
15
are
1
,
3
,
5
,
15
.
Tap for more steps...
1
,
3
,
5
,
15
List all the factors for
18
,
15
to find the common factors.
18
:
1
,
2
,
3
,
6
,
9
,
18
15
:
1
,
3
,
5
,
15
The common factors for
18
,
15
are
1
,
3
.
1
,
3
The GCF for the numerical part is
3
.
GCF
Numerical
=
3
Next, find the common factors for the variable part:
k
,
k
3
The factor for
k
1
is
k
itself.
k
The factors for
k
3
are
k
⋅
k
⋅
k
.
k
⋅
k
⋅
k
List all the factors for
k
1
,
k
3
to find the common factors.
k
1
=
k
k
3
=
k
⋅
k
⋅
k
The common factor for the variables
k
1
,
k
3
is
k
.
k
The GCF for the variable part is
k
.
GCF
Variable
=
k
Multiply the GCF of the numerical part
3
and the GCF of the variable part
k
.
3
k