1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
14

A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that a

n emf of 0.43 V and a current of 3.1 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are induced in the square coil
Physics
1 answer:
Reika [66]3 years ago
3 0

Answer:

2.62A

Explanation:

Given

V = 0.43 V

I = 3.1 A

Then, V = IR, R = V/I

R = 0.43/3.1

R = 0.14 Ω

The induced emf = dB/dt * A

So that, dB/dt = emf/A

Since dB/dt is constant then Emf/A(circle) = Emf/A square

So Emf (square)/Emf (circle) = A square / A circle

A circle = πr². The perimeter of the square is 2πr which also is the circumference of the square.

Since the perimeter is 2πr, then each side would be πr/2. Thus, the area of the square would be, (πr/2)² = π²r²/4

So A square/Acircle = (π²r²/4) / πr² = π/4 = 0.79

this means that, emf square = emf circle * 0.79

emf square = 0.43*0.79 = 0.34V

I = V/R

I = 0.34/0.13

I = 2.62A

You might be interested in
Recall from Chapter 1 that a watt is a unit of en- ergy per unit time, and one watt (W) is equal to one joule per second ( J·s–1
harkovskaia [24]

Answer:

Explanation:

The energy of a photon is given by the equation E_p=h f, where h is the <em>Planck constant</em> and f the frequency of the photon. Thus, N photons of frequency f will give an energy of E_N=N h f.

We also know that frequency and wavelength are related by f=\frac{c}{\lambda}, so we have E_N=\frac{N h c}{\lambda}, where c is the <em>speed of light</em>.

We will want the number of photons, so we can write

N=\frac{\lambda E_N}{h c}

We need to know then how much energy do we have to calculate N. The equation of power is P=E/t, so for the power we have and considering 1 second we can calculate the total energy, and then only consider the 4% of it which will produce light, or better said, the N photons, which means it will be E_N.

Putting this paragraph in equations:

E_N=(\frac{4}{100})E=0.04Pt=(0.04)(100W)(1s)=4J.

And then we can substitute everything in our equation for number of photons, in S.I. and getting the values of constants from tables:

N=\frac{\lambda E_N}{h c}=\frac{(520 \times10^{-9}m) (4J)}{(6.626\times10^{-34}Js) (299792458m/s)}=1.047 \times10^{19}

3 0
3 years ago
When astronomers look at distant galaxies, what sort of motion do they see?
arlik [135]
Hello! You can call me Emac or Eric.

I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.

Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.

Please reply if this doesn’t help, I will try my best to gather more information or a answer.

Here is some good information that could help you out a lot!


Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.

Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.

We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.


That is some information, I do have more if you need some! Thanks!

Have a great rest of your day/night! :)


Emacathy,
Brainly Team.


8 0
3 years ago
S Problem Set<br> 2.) 6.4 x 109 nm to cm
anyanavicka [17]

Answer:

6.4\cdot 10^2 cm

Explanation:

First of all, let's convert from nanometres to metres, keeping in mind that

1 nm = 10^{-9} m

So we have:

6.4\cdot 10^9 nm \cdot 10^{-9} m/nm = 6.4 m

Now we can convert from metres to centimetres, keeping in mind that

1 m = 10^2 cm

So, we find:

6.4 m \cdot 10^2 cm/m = 6.4\cdot 10^2 cm

8 0
3 years ago
A vertical scale on a spring balance reads from 0 to 155 N . The scale has a length of 10.0 cm from the 0 to 155 N reading. A fi
Harrizon [31]

Answer:

mass of the fish is 8.11 kg

Explanation:

As we know that the frequency of oscillation of spring block system is given as

f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}

here we know that the reading of scale varies from 0 to 155 N from length varies from x = 0 to x = 10 cm

Now we have

k = \frac{155}{0.10} N/m

k = 1550 N/m

so now we have

2.20 = \frac{1}{2\pi}\sqrt{\frac{1550}{m}}

m = 8.11 kg

so mass of the fish is 8.11 kg

4 0
3 years ago
Find the shear stress and the thickness of the boundary layer (a) at the center and (b) at the trailing edge of a smooth flat pl
melomori [17]

Answer:

a) The shear stress is 0.012

b) The shear stress is 0.0082

c) The total friction drag is 0.329 lbf

Explanation:

Given by the problem:

Length y plate = 2 ft

Width y plate = 10 ft

p = density = 1.938 slug/ft³

v = kinematic viscosity = 1.217x10⁻⁵ft²/s

Absolute viscosity = 2.359x10⁻⁵lbfs/ft²

a) The Reynold number is equal to:

Re=\frac{1*3}{1.217x10^{-5} } =246507, laminar

The boundary layer thickness is equal to:

\delta=\frac{4.91*1}{Re^{0.5} }  =\frac{4.91*1}{246507^{0.5} } =0.0098 ft

The shear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{1}  )(246507)^{0.5} =0.012

b) If the railing edge is 2 ft, the Reynold number is:

Re=\frac{2*3}{1.215x10^{-5} } =493015.6,laminar

The boundary layer is equal to:

\delta=\frac{4.91*2}{493015.6^{0.5} } =0.000019ft

The sear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{2}  )(493015.6^{0.5} )=0.0082

c) The drag coefficient is equal to:

C=\frac{1.328}{\sqrt{Re} } =\frac{1.328}{\sqrt{493015.6} } ==0.0019

The friction drag is equal to:

F=Cp\frac{v^{2} }{2} wL=0.0019*1.938*(\frac{3^{2} }{2} )(10*2)=0.329lbf

7 0
3 years ago
Other questions:
  • a force is something that causes change in motion. what provides the force that made the cart speed up?
    11·1 answer
  • A cube has a surface area of 54 cm squared. what is its volume
    6·1 answer
  • The amplitude, or magnitude, of a sinusoidal source is the maximum value of the source. What is the amplitude of the voltage sou
    7·1 answer
  • The _______ is the temperature to which air must be cooled at constant pressure to reach saturation.
    5·2 answers
  • The sound intensity 50m from a wailing tornado siren is 0.1W/m2 . What is the sound intensity level 300m from the siren?
    7·1 answer
  • Plssss help I need help with this question I need a good grade on the test!!!
    11·2 answers
  • A car starting at rest accelerates at 3m/s² How far has the car travelled after 4s?​
    10·1 answer
  • A race car decelerating by 3 m /s to 10 m / s has an acceleration of 25
    14·1 answer
  • Why is it generally easy to filter out particles in suspension?
    10·1 answer
  • Nvm I dont need help anymore
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!