Least- 2
Greatest- 12
Median- 7
Lower Q- 4
Upper Q- 8
Range-10
IQR- 4
To find the number of years between 1844 to 2015 you have to subtract.
Lets say that x is the # of years in between 1844 and 2015
Then we have:

After doing the subtraction using a calculator or a pencil and paper, you get that:

So 171 years have passed from 1844 to reach to 2015.
Answer:
<h2>4 + 3x</h2>
Step-by-step explanation:
The product of three and a number x: 3 · x = 3x
The sum of four and the product of three and a number x:
4 + 3x
Answer:
1+i
Step-by-step explanation:
To find the 8th roots of unity, you have to find the trigonometric form of unity.
1. Since
then

and

This gives you 
Thus,

2. The 8th roots can be calculated using following formula:
![\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bz%7D%3D%5C%7B%5Csqrt%5B8%5D%7B%7Cz%7C%7D%20%28%5Ccos%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%29%2C%20k%3D0%2C%5C%201%2C%5Cdots%2C7%5C%7D.)
Now
at k=0, ![z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;](https://tex.z-dn.net/?f=z_0%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%29%3D1%5Ccdot%20%281%2B0%5Ccdot%20i%29%3D1%3B)
at k=1, ![z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=2, ![z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;](https://tex.z-dn.net/?f=z_2%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%29%3D1%5Ccdot%20%280%2B1%5Ccdot%20i%29%3Di%3B)
at k=3, ![z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_3%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=4, ![z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;](https://tex.z-dn.net/?f=z_4%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%29%3D1%5Ccdot%20%28-1%2B0%5Ccdot%20i%29%3D-1%3B)
at k=5, ![z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_5%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=6, ![z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;](https://tex.z-dn.net/?f=z_6%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%29%3D1%5Ccdot%20%280-1%5Ccdot%20i%29%3D-i%3B)
at k=7, ![z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_7%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
The 8th roots are

Option C is icncorrect.