Answer:
Option B, Because of the reversible nature of crystallizing and dissolving
Explanation:
Solution containing the maximum amount of solute that can be dissolved in the given solvent at the particular temperature is called saturated solution.
Reversible reaction is the reaction which can go in reverse and forward direction both on varying reaction condition.
In the saturated NaCl solution, on lowering temperature, The the dissolved NaCl molecules may crystallize. Likewise on increasing temperature, the crystallized crystals may dissolved. As the reaction moves in both the direction, therefore its considered to be equilibrium system.
Therefore, amog given, option B is correct.
Because of the reversible nature of crystallizing and dissolving
M(dextrose) = 50 g.
V(solution) = 1 L.
n(dextrose) = 50 g ÷ 180 g/mol.
n(dextrose) = 0,27 mol.
Osmotic concentration (osmolarity)<span> is a measure of how many </span><span>osmoles of particles of solute</span><span> it contains </span>per liter.
The osmolarity = n(dextrose) ÷ V(solution).
The osmolarity = 0,27 mol ÷ 1 L.
The osmolarity = 0,27 mol/L · 1000 mmol/m.
The osmolarity (dextrose) = 270 mosm/L.
The osmolarity (dextrose monohydrate) = 50 g÷197 g/mol·1000 =254mosm/L
A group of environmentalists were discussing the benefits and drawbacks associated with using fossil fuels. Which argument <span>best </span>fits the conversation?
Fossil fuels are cheaper than alternative forms of energy.Fossil fuel reserves will never be depleted.<span>Fossil fuels are easily renewed. </span><span>Fossil fuel use does not affect the environment.</span>
Answer:
See the answer and explanation below, please.
Explanation:
There are 2 types of combustion:
-Complete: C02 (carbon dioxide) is generated and the flame is blue, in the presence of a large amount of oxygen.
-Incomplete: it is also generated as a product C0 (carbon monoxide) harmful to health, and the color of the flame is yellow. It is produced in the presence of a small amount of oxygen.
Answer:
Which observation provided Albert Einstein the clue that he needed to explain the photoelectric effect? Energy of electrons depends on light's frequency, not intensity. A change in which property of light will have no effect on whether or not the photoelectric effect occurs?
Explanation: