1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
8

I need help please it is Geometry

Mathematics
1 answer:
natka813 [3]3 years ago
7 0

Answer:

x = 52

Step-by-step explanation:

The external angle of a triangle is equal to the sum of the 2 opposite interior angles.

∠ PQS is an external angle of the triangle, thus

x + 72 = 90 + 34 = 124 ( subtract 72 from both sides )

x = 52

You might be interested in
Triangular prism please help
dalvyx [7]

Answer:

 C

Step-by-step explanation:

8 0
3 years ago
In the year 2000, the United States had a population of about 281.4 million people; by 2010, the population had risen to about 3
IgorC [24]

Answer:

Part 1. 0.9259 % per year

Part 2. P = 281.4e^(0.009 259t); 338.6 million  

Step-by-step explanation:

Data:

P₀ = 281.4 million

P  = 308.7 million

Part 1. Growth rate

t = 2010 - 2000 = 10 yr

        P = P₀e^(rt)

308.7 = 281.4e^(10r)

e^(10r) = 1.0970

     10r = ln1.0970

        r = (ln1.0970)/10 = (0.092 59)/10 = 0.009 259  

        r = 0.9259 % per year

The 10-year continuous growth rate is 0.9259 % per year.

Part 2. Population model

The population model is

P = 281.4e^(0.009 259t)

where P is in millions and t is the number of years since 2000.

By 2020,

P = 281.4e^(0.009 259 × 20) = 281.4e^0.1852 = 281.4 × 1.203

P = 338.6 million

The estimated population in 2020 is 338.6 million.

8 0
3 years ago
A flagpole is 10 feet tall. Its shadow is 12 feet long. How far is it from the top of the flagpole to the end of its shadow
zhannawk [14.2K]
Assuming right angle, root 10^2+12^2 and you get 2 root 61
3 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Part D:
Arisa [49]

Answer:

<h2>Adults and Seniors tendo to by more Unlimited Meals tickets</h2>

Step-by-step explanation:

The relation between the park guest and the type to ticket is that Adults and Seniors tendo to by more Unlimited Meals tickets, because they don't play that much in the park, children do.

Therefore, there's a relation that aroun Unlimited Meals tickets and Adults-Seniors costumers: they tend to get these tickest more than children.

7 0
3 years ago
Other questions:
  • I neeed help please !!!!
    6·2 answers
  • PLEASE PLEASE PLEASE HELP ME
    15·1 answer
  • A lawn with an area of 300 square feet needs 1/2 pound of grass seed. How many pounds of grass seed are needed for a lawn that i
    7·1 answer
  • If the occurrence of one event does not influence the outcome of another event, then two events are:
    15·1 answer
  • Person to answer gets 30 points!!!! Please set up the equation in y=__x+__ form please
    11·1 answer
  • NEED HELP ASAP WILL GIVE BRAINLIEST IF ANSWERED WITHIN 5 MINUTES
    14·1 answer
  • Pls help me do this question but pls don't get it wrong this is my attempt ​
    6·1 answer
  • Sketch the graphs y=lxl, y=lxl+1 and y=lxl-2
    7·2 answers
  • Josh is inviting his friends to a party he has 42 canola bars and 56 foot drinks and he wants to get the same number of each ite
    8·1 answer
  • Please help, this makes no sense to me.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!