0.98 is already rounded
it may also be asking for 0.980, which is equal but shows the thousandth place
The area of D is given by:
![\int\limits \int\limits {1} \, dA = \int\limits_0^7 \int\limits_0^{x^2} {1} \, dydx \\ \\ = \int\limits^7_0 {x^2} \, dx =\left. \frac{x^3}{3} \right|_0^7= \frac{343}{3}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%20%5Cint%5Climits%20%7B1%7D%20%5C%2C%20dA%20%3D%20%5Cint%5Climits_0%5E7%20%5Cint%5Climits_0%5E%7Bx%5E2%7D%20%7B1%7D%20%5C%2C%20dydx%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Cint%5Climits%5E7_0%20%7Bx%5E2%7D%20%5C%2C%20dx%20%3D%5Cleft.%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%5Cright%7C_0%5E7%3D%20%5Cfrac%7B343%7D%7B3%7D%20)
The average value of f over D is given by:
First, let's add 2.75 + 0.158. First, we add the thousandths places. Now, we have 2.758 + 0.15. Next, let's add the hundredths place. This is equal to 2.808+0.1. Finally, we have the tenths place. Now, our number is 2.908.
To finish this problem, we add 0.003. 2.908 + 0.003 = 2.911, so 2.911 is the answer to this problem.
5b-2=13 add 2 to both sides
5b=15 divide both sides by 5
b=3
Answer:
none of the above
Step-by-step explanation:
probability shouldn't be equal to or greater than 1