Answer:
(a) Vf = 128 ft/s
(b) K.E = 122.8 Btu
Explanation:
(a)
In order to find the velocity of the object just before striking the surface of earth or the final velocity, we use 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = 32.2 ft/s²
h = height = 253 ft
Vf = Final Velocity = ?
Vi = Initial Velocity = 10 ft/s
Therefore,
(2)(32.2 ft/s²)(253 ft) = Vf² - (10 ft/s)²
16293.2 ft²/s² + 100 ft²/s² = Vf²
Vf = √(16393.2 ft²/s²)
<u>Vf = 128 ft/s</u>
<u></u>
(b)
The kinetic energy of the object before it hits the surface of earth is given by:
K.E = (0.5)(m)(Vf)²
where,
m = mass of object = 375 lb
K.E = Kinetic energy of object before it strikes the surface of earth = ?
Therefore,
K.E = (0.5)(375 lb)(128 ft/s)²
K.E = 3073725 lb.ft²/s²
Now, converting this to Btu:
K.E = (3073725 lb.ft²/s²)(1 Btu/25037 lb.ft²/s²)
<u>K.E = 122.8 Btu</u>
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
Atmospheric electricity and storms, electrostatic control filters, and industrial electrostatic seperation as well as spark discharge. these are just a few. hope it helps.
On a flat surface a moving bicycle has more kinetic energy than a stationary car
Answer:

Explanation:
What is said is that the meter fell d=18.3cm=0.183m under the action of gravity. We can use the formula for accelerated motion:

Since it departed from rest it will mean that:

So our time will be:

Which for our values is:
