Answer:
129 J/Kg°C
Explanation:
Given :
Mass of gold, m = 1.2kg
Quantity of heat applied, Q = 3096 J
Temperature, t2 = 40°C
Temperature, t1 = 20°C
Change in temperature, dt = (40-20)°C = 20°C
Using the relation :
Q = mcdt
Where, C = specific heat capacity of gold
3096 = 1.2kg * C * 20°C
3096 J = 24kg°C * C
C = 3096 J / 24 kg°C
C = 129 J/Kg°C
Answer:
The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Explanation:
Given that,
Mass of proton 
Speed
We need to calculate the kinetic energy for non relativistic
Using formula of kinetic energy

Put the value into the formula


We need to calculate the kinetic energy for relativistic
Using formula of kinetic energy



Hence, The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Answer:
F = 47.6 N
Explanation:
- Newton's 2nd law can be expressed as the rate of change of the total momentum, respect of time, as follows:

- So, in order to find the average force exerted by the skater on the wall, we can find the change in momentum due to the force exerted by the wall (which is equal and opposite to the one exerted by the skater), and divide it by the time interval , as follows:

⇒ Fsk = 47.6 N (normal to the wall)
Answer:
117.72kW
Explanation:
Given data
Mass m= 50kg
height x = 2m
time taken = 2 minutes= 129 seconds
let us find the work done
WD= force * distance
WD= mgx
WD= 50*9.81*2
WD= 981 Joules
Let us find the power
Power= work * time
Power= 981*120
Power= 117720
Power= 117.72 kW
Hence the power spent is 117.72kW