Answer:
A. Distance over which the force is applied
Explanation:
As we know that in pulley system the mass of the car is balanced by the tension in the string
so here we will have

so here in order to decrease the force needed to lift the car we have to increase Distance over which the force is applied
So here if we increase the distance over which force is applied then it will reduce the effort applied by us in this pulley system as the torque will be more if the distance is more.
The potential energy is stored in the chemical bonds of the food. When those bonds break up during the metabolic processes, the energy is released. After that, that energy is stored in the Adenosine Triphosphate bonds aka ATP. The simplest way to think is to think of food as the tightly bound atoms. When the chemical bonds between those atoms break, the stored energy in that food is released.
Answer:
d) shortening the string
Explanation:
Time period of a pendulum clock is dependent on two factors namely:length and acceleration due to gravity.
When a clock loses time, the time period of the pendulum clock increases.
This however can be corrected by decreasing the length of the pendulum.The time period of the pendulum clock is not dependent on the mass of the bob. The time period of the pendulum clock can be corrected only by changing the length of the pendulum string.
Answer:
1353.38 Watt
Explanation:
T₁ = Initial temperature of the house = 35°C
T₂ = Final temperature of the house = 20°C
Δt = Time taken to cool the house = 38 min = 38×60 = 2280 s
m = mass of air in the house = 800 kg
Cv = Specific heat at constant volume = 0.72 kJ/kgK
Cp = Specific heat at constant pressure = 1.0 kJ/kgK
Heat removed
q = mCvΔT
⇒q = 800×720×(35-20)
⇒q = 8640000 J
Average rate of hear removal


∴ Power drawn by the air conditioner is 1353.38 Watt
Answer: YES
Explanation:
If Tia Ana exposes her eyes to light ray in which it frequency is higher than ultraviolet ray, it may result to a gradual eyes issue such as cataracts as the radiation damages the cornea and the lens in front of the eyes.