Here this should help you out brother I just want to get more
Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
Answer:
oh for real?
Explanation:
The solubility of glucose at 30°C is
125 g/100 g water. Classify a solution made by adding 550 g of glucose to 400 mL of water at 30°C. Explain your classification, and describe how you could increase the amount of glucose in the solution without adding more glucose.
The acceleration exerted by the object of mass 10 kg is
Answer: Option A
<u>Explanation:</u>
According to Newton’s second law of motion, any external force acting on a body will be directly proportional to the mass of the body as well as acceleration exerted by the body. So, the net external force acting on any object will be equal to the product of mass of the object with acceleration exerted by the object. Thus,
So,
As the force acting on the object is stated as 10 N and the mass of the object is given as 10 kg, then the acceleration will be
So, the acceleration exerted by the object of mass 10 kg is