Sound travels through waves, more specifically, through vibrations. They do not go from skull to ear, but they can go from ear to brain, or skull to brain. Ear to brain is simply vibrations traveling from outer ear, to inner ear, to the brain. Skull to brain, otherwise known as "bone conduction", has the vibrations hitting the skull, then to the temproal bone, then to the inner ear where the brain picks it up.
The starting angle θθ of a pendulum does not affect its period for θ<<1θ<<1. At higher angles, however, the period TT increases with increasing θθ.
The relation between TT and θθ can be derived by solving the equation of motion of the simple pendulum (from F=ma)
−gsinθ=lθ¨−gainθ=lθ¨
For small angles, θ≪1,θ≪1, and hence sinθ≈θsinθ≈θ. Hence,
θ¨=−glθθ¨=−glθ
This second-order differential equation can be solved to get θ=θ0cos(ωt),ω=gl−−√θ=θ0cos(ωt),ω=gl. The period is thus T=2πω=2πlg−−√T=2πω=2πlg, which is independent of the starting angle θ0θ0.
For large angles, however, the above derivation is invalid. Without going into the derivation, the general expression of the period is T=2πlg−−√(1+θ2016+...)T=2πlg(1+θ0216+...). At large angles, the θ2016θ0216 term starts to grow big and cause
As the distance between two charged objects increases, the strength of the electrical force between the objects <em>decreases</em>.
Answer:
C. Supervising the game to make sure teams are playing fairly