In order to make things easier to describe and explain, let's call
the resistance of each bulb 'R', and the battery voltage 'V'.
a). In series, the total resistance is 3R.
In parallel, the total resistance is R/3.
Changing from series to parallel, the total resistance of the circuit
decreases to 1/9 of its original value.
b). In series, the total current is V / (3R) .
In parallel, the total current is 3V / R .
Changing from series to parallel, the total current in the circuit
increases to 9 times its original value.
c). In series, the power dissipated by the circuit is
(V) · V/3R = V² / 3R .
In parallel, the power dissipated by the circuit is
(V) · 3V/R = 3V² / R .
Changing from series to parallel, the power dissipated by
the circuit (also the power delivered by the battery) increases
to 9 times its original value.
Answer:
a) C = 4,012 10⁻¹⁴ F, b) Q = 1.6 10⁻¹¹ C
, c) U = 3.21 10⁻¹¹ J
Explanation:
a) The capacitance of a capacitor is
C = k e₀ A / d
Let's calculate
C = 4 8.85 10⁻¹² 17 10⁻⁴ / 0.150 10⁻²
C = 4,012 10⁻¹⁴ F
b) let's look the charge
C = Q / ΔV
Q = C ΔV
Q = 4,012 10⁻¹⁴ 400
Q = 1.6 10⁻¹¹ C
c) The stored energy
U = ½ C ΔV²
U = ½ 4,012 10⁻¹⁴ 400²
U = 3.21 10⁻¹¹ J
The fluid that is being passed through the syringe and needle is incompressible, which means that it will transmit pressure equally. Therefore, the pressure on the plunger will be equivalent to the pressure on the needle. We also know that:
Pressure = Force / Area
Pressure on plunger = 4 / (π*(0.012/2)²)
Pressure on plunger = 35.4 kPa
Pressure on needle = 35.4 kPa
35.4 kPa = F / (4 / (π*(0.0025/2)²)
F = 0.17 N
The force on the needle is 0.17 N
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?