Answer:
56.3 m
Explanation:
aₓ(t) = -0.0320 m/s³ (15.0 s − t)
Integrate to get velocity:
∫ dv = ∫ a dt
vₓ(t) − v₀ₓ = ∫₀ᵗ aₓ(t) dt
vₓ(t) − v₀ₓ = ∫₀ᵗ -0.0320 m/s³ (15.0 s − t) dt
vₓ(t) − v₀ₓ = -0.0320 m/s³ (15.0 s t − ½ t²) |₀ᵗ
vₓ(t) − 8.90 m/s = -0.0320 m/s³ (15.0 s t − ½ t²)
vₓ(t) = -0.0320 m/s³ (15.0 s t − ½ t²) + 8.90 m/s
vₓ(t) = -0.480 m/s² t + 0.0160 m/s³ t² + 8.90 m/s
Integrate again to get position:
∫ dx = ∫ v dt
x(t) − x₀ = ∫₀ᵗ vₓ(t) dt
x(t) − x₀ = ∫₀ᵗ (-0.480 m/s² t + 0.0160 m/s³ t² + 8.90 m/s) dt
x(t) − x₀ = (-0.240 m/s² t² + 0.00533 m/s³ t³ + 8.90 m/s t) |₀ᵗ
x(t) − (-14.0 m) = -0.240 m/s² t² + 0.00533 m/s³ t³ + 8.90 m/s t
x(t) = -0.240 m/s² t² + 0.00533 m/s³ t³ + 8.90 m/s t − 14.0 m
Evaluate at t = 10 s:
x(10) = -0.240 m/s² (10 s)² + 0.00533 m/s³ (10 s)³ + 8.90 m/s (10 s) − 14.0 m
x(10) = -24.0 m + 5.33 m + 89.0 m − 14.0 m
x(10) = 56.3 m