Answer:
mass of the second ball is 0.379m
Explanation:
Given;
mass of first ball = m
let initial velocity of first ball = u₁
let final velocity of first ball = v₁ = 0.45u₁
let the mass of the second ball = m₂
initial velocity of the second ball, u₂ = 0
let the final velocity of the second ball = v₂
Apply the principle of conservation of linear momentum;
mu₁ + m₂u₂ = mv₁ + m₂v₂
mu₁ + 0 = 0.45u₁m + m₂v₂
mu₁ = 0.45u₁m + m₂v₂ -------- equation (i)
Velocity for elastic collision in one dimension;
u₁ + v₁ = u₂ + v₂
u₁ + 0.45u₁ = 0 + v₂
1.45u₁ = v₂ (final velocity of the second ball)
Substitute in v₂ into equation (i)
mu₁ = 0.45u₁m + m₂(1.45u₁)
mu₁ = 0.45u₁m + 1.45m₂u₁
mu₁ - 0.45u₁m = 1.45m₂u₁
0.55mu₁ = 1.45m₂u₁
divide both sides by u₁
0.55m = 1.45m₂
m₂ = 0.55m / 1.45
m₂ = 0.379m
Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)
Metal ores
Explanation:
in an area where subduction has occurred in times past, metal ores are likely to be found.
Metallic ores find subduction zone regions very favorable to crystallize out of a magma.
- Ores have different modes of formation.
- Typically, they are found in hydrothermal vents and black smokers of igneous intrusives.
- These are igneous terrains where metallic sulfides and other minerals crystallize out of magmatic body.
- Metals in magma usually have large sizes and do not partition easily in the melt.
At a subduction zone, partial melting of the subducting plate forces magma into nearby country rock as an intrusive and to the ocean floor where they form black smokers.
Learn more:
Rocks brainly.com/question/2740663
#learnwithBrainly
Answer:
It increases proportionally
Explanation:
The gravitational force between the Earth and an object on its surface is given by

where
G is the gravitational constant
M is the Earth's mass
m is the mass of the object
R is the Earth's radius
In this problem, the Earth's mass is increased, while the diameter (and therefore, the radius) doesn't change. From the equation, we see that the gravitational force is directly proportional to the Earth's mass: therefore, if the mass is increased, the force will increase as well by the same proportion (for example, if the mass is doubled, the force will double as well)
Rate of change of momentum = impact force
(m*v-m*u)/t = F
4000*20/t = 80000 (note: v is zero as it stopped)
<span>soo, t = 1 sec</span>