1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
3 years ago
15

An earthquake produces longitudinal P waves that travel outward at 8000 m/s and transverse S waves that move at 4500 m/s. A seis

mograph at some distance from the earthquake records the arrival of the S waves 2.0 min after the arrival of the P waves. How far away was the earthquake? You can assume that the waves travel in straight lines, although actual seismic waves follow more complex routes.
Physics
1 answer:
vivado [14]3 years ago
4 0

Answer:

1234285.7 m or 1234.3 km

Explanation:

Let the distance be d, the time taken by P waves be t_P and the time taken by the S waves be t_S.

\text{Velocity}\dfrac{\text{Distance}}{\text{Time}}

\text{Time}\dfrac{\text{Distance}}{\text{Velocity}}

For the P waves,

t_P=\dfrac{d}{8000}

d=8000t_P

For the S waves,

t_S=\dfrac{d}{4500}

d=4500t_S

Equating the d,

8000t_P=4500t_S

Divide both sides of the equation by 500 to reduce the terms.

16t_P=9t_S

Since S waves arrive 2 minutes (= 120 seconds) after P waves,

t_S-t_P=120

t_S=120+t_P

Substitute this in the equation of the distance.

16t_P=9(t_P+120)

16t_P=9t_P+1080

7t_P=1080

t_P=\dfrac{1080}{7}

Substitute this in the equation for d involving t_P.

d=8000t_P

d=8000\times\dfrac{1080}{7}

d=1234285.7 \text{ m }= 1234.3 \text{ km}

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
SOMEONE HELP ME PLSS​
lara31 [8.8K]
1. 2500/60 joules/sec
2. 2,500Nm
7 0
3 years ago
Read 2 more answers
Your friend is constructing a balancing display for an art project. She has one rock on the left ( ms=2.25 kgms=2.25 kg ) and th
Firdavs [7]

Answer:

Torque = 35.60 N.m (rounded off to 3 significant figures.

Explanation:

Given details:

The mass of the rock on the left, ms = 2.25 kg

The total mass of the rocks, mp = 10.1 kg

The distance from the fulcrum to the center of the pile of rocks, rp = 0.360 m

(a) The torque produced by the pile of rock, T = F*rp = m*g*rp

Torque = 9.8*0.360*10.1 = 35.6328

Torque = 35.60 N.m (rounded off to 3 significant figures).

5 0
3 years ago
When compared to
ElenaW [278]
I think it is B, because the sun’s size is pretty average
3 0
2 years ago
If measurements of gas are 75 L and 300 kIlopascals and then the gas is measured is second time and found to be 50 L, describe w
Ann [662]

Answer:

The pressure must have increased in the process

Explanation:

The State Equation for gasses reads: P*V=n*R*T

where P is the gas' pressure, V its volume, n the number of moles of gas,  R the gas constant and T the temperature in degrees Kelvin.

If the temperature of the gas doesn't change in the described process, the right hand side of the equation stays the same. If that is the case, given that when the Volume of the gas diminishes from 75 liters to 50 liters, then the pressure must have increased to keep that product "P * V" constant:

P_i*V_i=P_f*V_f\\75 *300=50*X\\X=\frac{75*300}{50} =450

So the pressure must have gone up to 450 kilopascals.

3 0
3 years ago
Other questions:
  • For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
    13·1 answer
  • If earth did not rotate how would air at the equator move?
    15·2 answers
  • A ball of mass 0.5 kg is released from rest at a height of 30 m. How fast is it going when it hits the ground? Acceleration due
    13·1 answer
  • 1. I drop a penny from the top of the tower at the front of Fort Collins High School and it takes 1.85 seconds to hit the ground
    6·2 answers
  • Can you please help me with these physics displacement questions? If you can only do one, that is okay
    14·1 answer
  • What is Newton's first law
    8·1 answer
  • A balloon is inflated from 0.0100 l to 0.400 l against an external pressure of 10.00 atm. how much work is done in joules? 101.3
    14·2 answers
  • Qualitative observation requires numerous data to discribe research A .true B. False
    9·1 answer
  • What is "Motion?"
    6·1 answer
  • A train travel on a straight track passing signal A at 20ms-1. It accelerates uniformly a 3ms-2 and reaches signal B 120m furthe
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!