Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, for the given masses of reactants we should compute the limiting reactant for which we first compute the available moles of iron (II) oxide:

Next, we compute the consumed moles of iron (II) oxide by the 10.0 g of magnesium, considering their 1:1 molar ratio in the chemical reaction:

Therefore, we can notice there is less consumed iron (II) oxide than available for which it is in excess whereas magnesium is the limiting reactant. In such a way, the produced mass of iron turns out:

Regards.
Answer:
Explanation:
Sulfur has valence electron 6 and oxygen has 6*3 = 18 valence electrons. In this drawing, you'll see that sulfur violates the octet rule that is it has more than 8 electrons but it is legal since sulfur is in 3rd period, and elements that fall in 3rd period or more in periodic table can use their d orbitals and others to go beyond the normal "8" electrons in valence shell rule which is octet rule
All the formal charges are minimized...that is everything has formal charge of 0 in this structure which is always encouraged.
Credits to chemistNATE who wonderfully explains it in his video.
Explanation:
It is more difficult to remove electrons from the second shell or energy level because of the imbalance between the positive nuclear charge and the remaining electrons.
- The amount of energy required to remove electrons in ground state of an atom is the ionization energy.
- The first ionization energy is the energy needed to remove the most loosely bound electron of an atom in the gas phase in ground state.
- The second energy has a greater nuclear pull as it is closer to the nucleus.
- Both potassium and silicon have the same number of energy levels.
1. The newspaper solution that would work best with inks is alcohol since alcohol can dissolve inks.
2. Water can be used to carry salts since salts are soluble in water.
3. Oils can be used to carry fatty acids since they're both hydrophobic substances.<span />
Answer:
Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom. ... Covalent compounds tend to be soft, and have relatively low melting and boiling points.