Answer:
Question 2: Na3PO4, KOH; Question 3: Na3PO4, KOH
Explanation:
Question 2
The reactants in a chemical equation are the species on the left side of the reaction arrow.
Thus the reactants are Na3PO4, KOH (sodium phosphate and potassium hydroxide).
Question 3.
The products in a chemical equation are the species on the right side of the reaction arrow.
Thus the products are NaOH, K3PO4 (sodium hydroxide and potassium phosphate).
"if it is tested in a controlled setting with repeated results" is the statement among the choices given in the question that best describes that can possibly make this scientific claim valid. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer has helped you.<span>
</span>
Answer:
Option E, Half life = 
Explanation:
For a first order reaction, rate constant and half-life is related as:

Where,
= Half life
k = Rate constant
Rate constant given = 


So, the correct option is option E.
<u>Answer:</u> The number of moles of weak acid is
moles.
<u>Explanation:</u>
To calculate the moles of KOH, we use the equation:

We are given:
Volume of solution = 43.81 mL = 0.04381 L (Conversion factor: 1L = 1000 mL)
Molarity of the solution = 0.0969 moles/ L
Putting values in above equation, we get:

The chemical reaction of weak monoprotic acid and KOH follows the equation:

By Stoichiometry of the reaction:
1 mole of KOH reacts with 1 mole of weak monoprotic acid.
So,
of KOH will react with =
of weak monoprotic acid.
Hence, the number of moles of weak acid is
moles.