Answer:
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas.
The covalent bond between two atoms can be polar or nonpolar. If the atoms are equal, the bond will be nonpolar (since no atom attracts electrons more strongly). But, if the atoms are different, the bond will be polarized towards the most electronegative atom, because it will be the atom that attracts the electron pair with more force. Then it will be polar.
It can occur in a molecule that the bonds are polar and the molecule is nonpolar. This occurs because of the geometry of the molecule, which causes them to cancel the different equal polar bonds of the molecule.
In carbon tetrachloride the bonds are polar, but the tetrahedral geometry of the molecule causes all four dipoles to cancel out and the molecule to be apolar.
<span>The alkali metals and hydrogen are reactive because they have only one electron to give in order to complete their valence shell. It is easier to give that one electron so when given the opportunity they will. This means they will react with anything polar or willing to take an electron.</span>
Answer:
<h2>
"The sound wave traveled more quickly through the water than the balloon."</h2>
Explanation:
A sound is produced by <em>vibration. </em>These vibrations are called<u><em> "sound waves."</em></u> In order for sound waves to travel, it needs a particular medium. This medium can either be <em>solid, liquid or gas.</em>
Remember that sound waves travel faster in a <u>"solid medium,"</u> because this matter is denser than the other two. Sound waves travel faster in liquid than in gas, because water is densely packed with particles than gas (such as air).
In the situation above, the answer is "The sound wave traveled more quickly through the water than the balloon." As I've mentioned earlier, sound waves travel faster in liquid than in gas. Thus, the sound waves traveled faster through the glass of water (liquid) than the helium (gas) balloon.
Answer:
The exact result is 82.5 min (close to c. 80 min)
Explanation:
Hello,
In the following picture you'll find the numerical procedure for this exercise.
- Take into account that the initial concentration and the velocity constant remain constant for the two mentioned scenarios.
Best regards.