Answer:Any change that occurs without altering the chemical composition of a substance is a physical change. Physical changes can include changing the color, shape, state of matter, or volume of a substance. It is crucial to remember that physical changes never alter the chemical makeup.
Explanation:
i hope that helps u try to figure it out a little bit sorry i couldn't find your answer i didn't have much to go off of
Answer:
For example, friction between our shoes and the floor stop us from slipping and friction between tyres and the road stop cars from skidding. Friction is sometimes unhelpful. For example, if you don't lubricate your bike regularly with oil, the friction in the chain and axles increases.
Explanation:
Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
It’s either the first or second one
I think it’s the first one - the outer cells of the blastocyst
Explanation:
Molar mass of HBr = 81 g/mol
Molar mass of nitrogen dioxide gas = 46 g/mol
Molar mass of ethane = 30 g/mol
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So, the gas with least molar mass will effuse out fastest from the container and that is ethane gas.
The formula for average kinetic energy is:

where,
k = Boltzmann’s constant = 
T = temperature = 273.15 K ( at STP)
As we can see from the formula that kinetic energy depends upon only temperature of the gas molecule.
So, from this we can say that all the gas molecules have the same average kinetic energy at this temperature.