Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is

g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
Answer:
A. The person has brown eyes, and the brown eye color remains a dominant trait.
Explanation:
The dominant trait will always be the one to be show. The recessive trait will be shown if both recessive alleles are inherited.
Answer:
Explanation:
In the qualitative analysis of metal salts , we see that in group I , metal chlorides are precipitated out . It is so because their metal chlorides are insoluble in water .
In this group following metal ions are present
Ag+,
Hg₂²⁺
Pb²⁺
Answer:
Molar concentration of S₂ is 1.77×10⁻⁶M
Explanation:
For the reaction:
2H₂S(g) ⇄ 2H₂(g) + S₂(g)
The equilibirum constant, K, is defined as:
<em>(1)</em>
Concentrations in equilibirum are:
[H₂S] : 0,163/0.500L - X
[H₂] : 0,0500/0.500L + X
[S₂] : X
Replacing the concentrations and the equilibrium value in (1):
![K = \frac{[X][0.1+X]^2}{[0326-X]^2}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BX%5D%5B0.1%2BX%5D%5E2%7D%7B%5B0326-X%5D%5E2%7D)
1.67x10⁻⁷ = X (X² + 0.2X + 0.01) / (X² -0.652X + 0.106)
1.67x10⁻⁷X² - 1.09x10⁻⁷X + 1.77x10⁻⁸ = X³ + 0.2X² + 0.01X
0 = X³ + 0.2X² + 0.01X - 1.77x10⁻⁸
Solving for X:
X = 1.77×10⁻⁶
As [S₂] = X, <em>molar concentration of S₂ is 1.77×10⁻⁶M</em>
I hope it helps!